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Abstract—Spectrum auctions, which allow a spectrum owner
to sell licenses for signal transmission over specific bands, can
allocate scarce spectrum resources quickly to the users that value
them most and have received a great deal of research attention
in recent years. While enabling reusability-driven spectrum
allocation, truthful spectrum auction designs are also expected to
provide price fairness for homogeneous channels, online auction
with unknown and dynamic spectrum supplies, and bounded sys-
tem performance. Existing works, however, lack of such designs
due to the inherent technically challenging nature. In this paper,
we study the problem of allocating channels to spectrum users
with homogeneous/heterogenous demands in a setting where idle
channels are arriving dynamically, with the goal of maximizing
social welfare. Taking spectrum reusability into consideration, we
present a suite of novel and efficient spectrum auction algorithms
that achieve fair pricing for homogeneous channels, strategy-
proofness, online spectrum auction with a dynamic supply and a
log approximation to the optimal social welfare. To the best of our
knowledge, we are the first to design truthful spectrum auctions
enabling fair payments for homogenous channels and spectrum
reusability with dynamic spectrum supply. Experimental results
show that our schemes outperform the existing benchmarks by
providing almost perfect fairness of pricing for both single- and
multi-unit demand spectrum users.

I. INTRODUCTION

The rapid growth of wireless technologies and applications
has increasingly made radio spectrum a critical yet scarce
resource for wireless services. Traditional centralized and static
spectrum allocations led to an inefficient use of spectrum
resources, which motivates (i.e., financial incentives) the de-
sign of market-based approaches for redistributing the idle
spectrum, providing spectrum opportunities for unexploited
licensed bands and gaining efficient spectrum utilization.

To allow a spectrum owner to sell licenses for signal
transmission over specific bands, auctions can be used to al-
locate scarce spectrum resources quickly and efficiently to the
users that value them most. In contrast to other digital goods,
spectrum has a very unique characteristic called reusability due
to the inherent nature of interference in radio transmissions.
That is, users whose radio transmissions do not interfere each
other in different geographic locations are able to share the
same spectrum simultaneously. Obviously, spectrum/frequency
reusability enables the communication system to increase both
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coverage and capacity. However, it also poses new challenges
for the spectrum auction design, e.g., the reusability makes it
hard to achieve a truthful spectrum auction design.

To accommodate reusability-driven spectrum allocation,
recently spectrum auctions have received extensive research
efforts in the literature [1]–[7]. The key idea of addressing
the problem of spectrum reusability is to divide bidders into
multiple non-overlapping segments based on the interference
constraints using graph coloring algorithms [8]. In those ap-
proaches, their design goals are to achieve spectrum auctions
with either truthfulness [1], [3]–[7], or revenue maximiza-
tion [6], or collusion-resistance [5], or privacy-preservation [4],
or satisfaction of spectrum users with heterogeneous de-
mands [7]. While theoretically sound, they only focus on the
offline or say static auction model, where the set of users (i.e.,
bidders) and the set of goods (i.e., channels) are pre-determined
before the start of auction process.

Recently, researches on online spectrum auction models
have aroused much interest [9]–[11]. In [9], Deek et al. made
an extension of [1] and investigated the online multi-good
selling scenario. However, it does not provide a performance
bound on revenue with respect to the optimal solution in
general. Under the same online auction model, Xu et al. [10]
proposed TOFU, another online semi-truthful spectrum auction
scheme with channel preemption. Different from the previous
solutions, TOFU achieves only semi-truthfulness, where users
may be able to underbid to gain self-benefits. As a following
work, Xu et al. [11] extended the results to multi-channel
wireless networks. Almost without exception the above online
designs consider the dynamic behaviors of spectrum users,
where spectrum resources are fixed and spectrum users are
arriving dynamically. In practice, however, the availability
of spectrum resources are changing dynamically. That is,
previously-occupied channels will be continually released and
made available for unsatisfied spectrum users during one auc-
tion period. As far as we know, the existing spectrum auction
solutions cannot be applied to this application scenario. Such
online auction model with dynamically-arriving and unknown
spectrum supplies has received limited research attention so
far. In addition, almost all existing spectrum auction models
consider the allocation of homogeneous channels with uniform
characteristics, but the payments of different users for a
channel vary greatly. From the perspective of users, it is unfair
for them to make payments that differ considerably for the
same goods, i.e., homogeneous channels.
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To address the above concerns, in this paper we propose
a suite of novel and efficient spectrum auction mechanisms.
In particular, we introduce a two-level randomization into the
selection of winning candidates and seamlessly integrate the
channel allocation with carefully-designed pricing methods,
achieving fair pricing for homogeneous channels, strategy-
proofness, online auction with a dynamic spectrum supply and
bounded performance. To the best of our knowledge, we are the
first to design truthful spectrum auctions enabling fair pricing
and spectrum reusability with dynamic spectrum supply. More
specifically, our contributions are summarized as follows.

• We formulate and investigate the problem of allocat-
ing channels to spectrum users in a setting where idle
channels are arriving dynamically and the total channel
supply is unknown, with the goal of maximizing the social
welfare.

• We propose a new and novel spectrum auction scheme for
the single-unit demand case and show that it achieves all
desirable properties, including truthfulness, price fairness,
efficiency and online auctions with dynamic and unknown
supply of idle channels.

• We extend our online spectrum auction system to support
spectrum users with multi-unit demands. We prove that
the proposed scheme again achieves truthfulness and
show that good price fairness for each channel can still
be achieved.

• We analytically show that the proposed schemes can
achieve a log approximation to the optimal social welfare.
Experimental results show that our schemes outperform
the existing benchmarks by providing almost perfect price
fairness for both single- and multi-unit demand spectrum
users.

The rest of the paper is organized as follows. We present
the preliminaries and definitions in Section II. We identify the
design challenges, develop our spectrum auction mechanisms
and provide theoretical analysis of their properties in Section
III. In Section IV, we conduct experiments to evaluate and
compare the performance of our spectrum auction mechanisms
with the existing benchmarks. We discuss the related work in
Section V and finally conclude our work in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

Due to the scarcity of spectrum resource, we consider an
online spectrum auction system, where an auctioneer (i.e.,
spectrum authority) sells licenses for signal transmission on
available channels to n bidders (i.e., spectrum users) located
in a geographic region. We assume channels over the spectrum
to be auctioned have uniform characteristics and values, and
each bidder i desires di channels. In practice, channels are
auctioned for use over a period of time, and they will be
dynamically occupied and vacated by winning bidders. Due to
the dynamic nature of channel occupancy and release, the total
channel supply is uncertain. A key characteristic of wireless
communications is the ability to re-use frequencies/channels to
increase system capacity, so different bidders sufficiently far
apart can operate on the same frequency/channel. To model
this, we represent the interference condition among bidders by
an interference graph: two bidders either interfere with each
other or can use the same channel simultaneously. We assume

bidders do not collude with each other and make their bids in-
dependently. When idle channels are arriving dynamically, the
auctioneer should make the allocation and payment decisions
in an online manner, with the goal of achieving price fairness,
truthfulness and bounded performance.

Per-channel bid (bi) – It represents the per-channel bid
submitted by bidder i. Let B = {b1, b2, ..., bn} denote the set
of bids submitted by all the bidders.

Channel demand (di) – It represents the number of chan-
nels bidder i would like to bid. Let D = {d1, d2, ..., dn} denote
the set of channel demands of all the bidders.

Per-channel valuation (vi) – It represents the true price
bidder i is willing to pay for one channel. We assume that the
per-channel valuation is a private value and is known only to
the bidder itself.

Per-channel payment (pi) – It represents the bidder i’s
payment for one channel.

Bidder utility (ui) – The utility of bidder i is defined by
ui = vi ·xi−pi ·xi, where xi denotes the number of channels
bidder i gets after the spectrum auction.

Definition 1. A truthful spectrum auction is the one that for
any spectrum user i, regardless of the declarations of the
others, ui achieves the maximum when user i bids for each
channel at its valuation, i.e., bi = vi.

To achieve truthfulness, many spectrum auction designs
determine each winner’s payment based on other users’ bids.
As a consequence, the same channel is most probably priced
at different values for different winning users. From the
perspective of users, there exists price discrimination for iden-
tical goods (i.e., homogeneous channels) such that a winner
charged at a higher price may prefer another winner’s allocated
channels and payment to his own. To this end, we have the
following definition.

Definition 2. A fair spectrum pricing scheme is the one that
each winning spectrum user will pay exactly or almost the
same price for identical channels.

One of our design goals is to maximize the social welfare,
which is the sum of the valuations of winning bidders. In our
model, due to spectrum reusability, a channel simultaneously
used by two interfere-free users can be considered as two dis-
tinct selling items. For ease of understanding and explanation,
in the following discussion we assume the number of selling
items is l when taking into account the effect of reusability.
Then, the optimal social welfare should be carefully defined
to characterize our model. In the following, we first give the
definition of optimal social welfare for the single-unit demand
case. Without loss of generality, we assume that v1, v2, . . . , vn
are sorted in non-increasing order.

Definition 3. The optimal social welfare for the single-unit
demand case is denoted by S-OPT

(l)
L =

∑l
i=1 vi when l

selling items could be provided to L winners.

In single-unit case, it is easy to see that L = l when
taking into account reusability. So, we use S-OPTL instead

of S-OPT
(l)
L for simplicity. We next consider the optimal
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solution for the multi-unit demand case. Unlike the single-
unit case, the last winner may be partially-satisfied due to∑L

i=1 di > l. If we consider a strictly single-minded user
(i.e., this partially-satisfied bidder will not be regarded as a
winner), given l selling items, the social welfare maximization
problem will become a knapsack problem [12]. Consequently,
this will pose a challenge for defining the optimality in
our model since the optimal solution of knapsack problem
conflicts with the fairness of allocation, e.g., the partially-
satisfied user with higher valuation may be replaced by users
with lower valuations. Therefore, we weaken the strict demand
requirement and allow that the last winner could be partially-
satisfied. Then we define the optimal solution as follows.

Definition 4. The optimal social welfare for the multi-unit case
is denoted by M -OPT

(l)
L =

∑L−1
i=1 vidi + vL(l −

∑L−1
i=1 di),

subject to L = argmin1≤L≤n(
∑L

i=1 di ≥ l) when l items
could be provided to L winners.

In the above definition, (l −∑L−1
i=1 di) denotes the selling

items obtained by the last winner, vL(l−
∑L−1

i=1 di) denotes the
total valuation of the last winner, and the sum of valuations of
the L−1 fully-satisfied winners is denoted by

∑L−1
i=1 vidi. Note

that the last winner could either be fully-satisfied or partially-
satisfied.

III. OUR SPECTRUM AUCTION CONSTRUCTION

In this section, we first illustrate the deficiencies and
challenges in designing efficient and truthful spectrum auctions
supporting price fairness under dynamic spectrum supply.
Then, we propose new and novel spectrum auction construc-
tions achieving all desirable properties, including truthfulness,
price fairness and online auction with dynamic supply.

A. Identifying the Challenges of Spectrum Auction Design

We show that the existing truthful spectrum auction designs
are insufficient to meet the above properties when applied to
our model. For the ease of understanding, we assume each
bidder requests at most one channel. The same conclusions
could be applied to the multi-unit case.

1) The Insufficiency of Price Fairness with A Dynamic
Spectrum Supply: Consider the classical k-item Vickrey auc-
tion [13] where k winners pay at the (k + 1)-th bidder’s
bid, it achieves price fairness according to Definition 2. We
show that when it is applied to a dynamic supply setting, the
pricing outcomes become unfair. Assume there are 3 bidders,
each of which requests one channel and interferes with each
other. In a dynamic supply setting, there are 2 idle channels
arriving sequentially. Without loss of generality, we assume
B = {b1 = 7, b2 = 6, b3 = 1}. Because idle channels should
be instantly allocated in an online manner, the first idle channel
will be allocated to bidder one with the pricing value equivalent
to bidder two’s bid, i.e., p1 = b2 = 6. After a short time
period, the second channel is available and will be allocated
to bidder two, and the payment equals to bidder three’ bid,
i.e., p2 = b3 = 1. During one auction period, the pricing is
obviously unfair since bidder one values the channel most (i.e.,
declares the highest bid) but pays much more than bidder two
for an idle channel. Thus, the natural extension of Vickrey
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Fig. 1. An example of price unfairness when idle channels arrive at the same
time point.
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Fig. 2. An example of price unfairness when idle channels arrive at different
time points.

auction to the online case with a spectrum dynamic supply
makes the pricing unfair.

We next consider another truthful and efficient auction
mechanism named VERITAS, which is particularly designed
for spectrum auctions with channel reusability [1].

Allocation:

• Sort the bids in non-increasing order.
• Extract the first bidder (e.g., bidder i) in the sorted list

and check whether there exists a channel to satisfy bidder
i, i.e., |Distinct(N(i))|+1 ≤ k, where |Distinct(N(i))|
denotes the number of channels allocated to the in-
terfering bidders of bidder i, and k is the number of
independent channels. If the checking equation holds,
allocate bidder i a channel with the lowest available index
not in Distinct(N(i)).

• Repeat step 2 until all the bidders are examined.

Pricing:

• Find the critical neighbor for each winner. The critical
neighbor of bidder i is defined as follows: bidder i can
get allocated if and only if it bids higher than its critical
neighbor.

• Charge each winner i with the bid of its critical neighbor
multiplied by the number of channels allocated to winner
i.

In Figs. 1 and 2, we show that VERITAS cannot achieve
price fairness using two counter examples. Assume there are
5 bidders (A,B,C,D,E) with bids {bA = 7, bB = 5, bC =
2, bD = 3, bE = 1}, each requesting at most one channel.
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Figs. 1 and 2 show the conflict graphs of 5 bidders competing
for two channels CH1 and CH2. In Fig. 1, two channels
arrive at the same time point. After the greedy allocation and
the critical value based pricing, bidders A,B,C and E get
allocated. However, for homogenous channels the payment of
the winners are quite different: bidders A and B pay more
than twice as the payment of bidder C, and more seriously
bidder E pays nothing for free use. In Fig. 2, two channels
arrive sequentially at different times. Compared to the case in
Fig. 1, while the winners are still A,B,C and E, bidder A pays
even more and is charged at 5. Obviously, for both scenarios
VERITAS [1] contradicts the definition of price fairness.

2) Truthfulness Under Channel Reusability: When directly
applied to spectrum auctions, conventional truthful auction
designs, such as secondary pricing spectrum auction and VCG-
style spectrum auction, become untruthful due to channel
reusability [1]. Unlike conventional auction models, spectrum
bidders have interference constraints with each other such that
the number of available channels is different for different bid-
ders. Therefore, a bidder could manipulate its bid to disrupt the
resource allocation and pricing and thus inherently violates the
truthfulness of auction designs. Keeping fairness and efficiency
in mind, we should also carefully take care of truthfulness
under channel reusability.

All of the above observations highly motivate us to design
a new yet practical spectrum auction system that achieves all
desirable properties.

B. Spectrum Auction with Dynamic Supply: The Single-unit
Case

In this section, we present a new spectrum auction scheme,
achieving truthfulness, fairness with dynamic supply and effi-
ciency. We start from the single-unit case, where each spectrum
user requests at most one channel. In the next subsection, we
will extend our approach to support multi-unit demand users.

Different from the existing spectrum auction schemes, our
scheme will choose some bidders as eligible bidders who
receive equal opportunity to get allocated. Intuitively, the larger
value a user bids at, the higher chance it becomes an eligible
bidder. However, an eligible user may lose a bid due to the
introduction of randomization in the allocation process.

Our spectrum auction scheme mainly includes three parts:
an initialization process, a spectrum winner selection algorithm
and a pricing algorithm. Our spectrum auction design for the
single-unit demand case is shown in Algorithm 1. We denote
bidder i’s bid by [bi, di], where bi is the per-channel bid and
di is the number of channels requested by i. In the single-
unit case, di = 1. Assume that the bid set B is sorted in
non-increasing order of bi. Without loss of generality, let B =
{b1, b2, . . . , bn}, where n denotes the total number of bidders.
The initialization mainly consists of two steps:

1) Eligible bidder selection. Select q from
{21, 22, . . . , 2i, . . . , n} uniformly at random and let
the q top-ranking bidders in B be eligible bidders.

2) Bidder grouping. Divide eligible bidders into multiple
interference-free groups G = {g1, g2, . . . , gm} using
graph coloring algorithm [14].

By selecting the q top-ranking bidders in B as eligible
bidders, no user will be an eligible bidder before others whose
per-channel bids are higher than its per-channel bid anytime.
This means that the larger the bid, the higher probability the
bidder will be selected as an eligible bidder. In other words, the
selection of eligible bidders is to assign idle channels to the
top-ranking bidders in an online manner. Note that, because
grouping first before eligible bidder selection will generally
result in more bidder groups (the grouping approach is inde-
pendent of bid values), ineligible bidders that interference with
eligible bidders will decrease the spectrum utilization. This
motivates us to select eligible bidders first before performing
the bidder grouping.

Before presenting the winner selection step, we first give
an important definition used in our algorithm.

Definition 5. An unassigned group is a group in which none
of bidders has got allocated. An unassigned group becomes
an assigned group once a bidder of the group gets allocated
an idle channel, and accordingly the channel allocated to the
bidder is assigned to this group.

Note that, even if a bidder belongs to an assigned group,
it will not get allocated the channel assigned to its group
until it is activated first. In our spectrum auction model, idle
channels are arriving in an unpredictable manner, the spectrum
auctioneer should choose winners and allocate channels online:

1) Obtain a random permutation of {b1, b2, . . . , bq}, denoted
by B′ = {b′1, b′2, . . . , b′q}.

2) Extract the first available bidder in B′ and check if the
group to which it belongs is unassigned or not. If the
group is an unassigned one, allocate directly an idle
channel to it and mark the group as assigned; otherwise
activate the bidder and allocate it the channel that has
been already assigned to its group. Eliminate this satisfied
bidder from B′.

3) Continue step 2 until all idle channels (which arrive
online) are allocated or all q eligible bidders have been
satisfied.

In Algorithm 1, the motivation of permutating per-channel
bids of eligible bidders is that, eligible bidders may have
the motivation to improve their own bids to obtain spectrum
resource as early as possible due to the dynamical arrival
of idle channels. Another key point in our design is that an
eligible bidder will not get allocated until being activated. This
is to ensure the channel allocation sequence strictly follows the
permutation order of spectrum bidders.

We next consider the pricing algorithm. In online auctions
with a dynamic spectrum supply, when bidder i gets allocated,
it should be charged at the same time. The random number q
obtained during eligible bidder selection determines not only
the maximum number of winners but also the prices to be
charged for all winners. So, no matter which group the bidder
belongs to, each winning bidder is charged at bq+1, which is
equivalent to the highest bid declined by the bidder (which is
not allowed to use idle spectrum resources):

pi = bq+1.

Bidders that do not get allocated will pay zero.
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Algorithm 1 Online spectrum auction for the single-unit
demand user under an unknown supply of idle channels.

1: Unassigned group set: UG = {g1, g2, . . . , gm};
2: Assigned group set: AG = ∅

3: Sort bids in B and obtain {b1, b2, . . . , bn};
4: Select q randomly from {21, 22, . . . , 2i, . . . , n};
5: Divide {b1, . . . , bq} into interference-free bidder groups;
6: Permutate {b1, b2, . . . , bq} to get B′; %initialization is

done, winner selection and channel allocation starts as
follows

7: for each idle channel j coming dynamically do
8: avail ch = {cj};
9: if B′ = ∅ then

10: break;
11: else
12: b = FirstBid(B′); %get the first bid in B′
13: i = ID(b); %get ID of the bidder with bid b(i)

14: g(i) = Group(i); %find the group which bidder i
belongs to

15: while (avail ch �= ∅) or (g(i) ∈ AG) do
16: if g(i) ∈ UG then
17: Allocate(i);
18: pi = bq+1; %bq+1 = 0 when q = n
19: Assign(cj , g

(i));
20: avail ch = avail ch \ {cj};
21: UG = UG \ {g(i)};
22: AG = AG ∪ {g(i)};
23: else
24: Activate(i) and Allocate(i);
25: pi = bq+1;
26: end if
27: B′ = B′ \ {b};
28: b = FirstBid(B′);
29: i = ID(b);
30: g(i) = Group(i);
31: end while
32: end if
33: end for

We next analyze the properties of the proposed spectrum
auction scheme dealing with the single-unit demand case.

Analysis of truthfulness: In the following, we prove the
truthfulness by showing whether or not all eligible bidders can
be satisfied, a bidder cannot gain any benefits by untruthful
bidding.

Lemma 1. When all eligible bidders can be satisfied, any
bidder cannot misreport the per-channel bid to increase its
utility.

Proof: Assume there exist enough idle channels arriving
dynamically such that all eligible bidders will be satisfied
during one auction period. Among n bidders, however, only
some of them will become eligible bidders. Let uv

i and ub
i

be bidder i’s utilities when bidding at vi and bi respectively,
where vi denotes bidder i’s valuation. By the definition of
truthfulness, we should ensure ub

i ≤ uv
i for bi �= vi in all cases.

In our auction scheme, pi = bq+1 and q is chosen randomly.
Then, we show the truthfulness of our auction scheme by
analyzing all possible cases.

• Case 1: bi > vi > bq+1. No matter whether bidder i bids
at bi or vi, it will always be an eligible bidder, and the
clearing price bq+1 will be the same. Thus, ub

i = uv
i =

vi − bq+1, the claim holds.
• Case 2: bi > vi = bq+1. No matter whether bidder i bids

at bi or vi (if bidding at vi, it will not be selected as
an eligible bidder if there are strictly q bidders with bids
larger than bq+1; however, if among the top-q ranking
bids, some of them have bids that equal to bq+1, it may
be selected as an eligible bidder), the utility of bidder i
will always be zero, ub

i = vi − bq+1 = 0 = uv
i , the claim

holds.
• Case 3: vi > bi > bq+1. No matter whether bidder i bids

at bi or vi, it will definitely be satisfied. Then, the utility
of bidder i will be ub

i = uv
i = vi − bq+1.

• Case 4: vi > bi = bq+1. Similar to Case 2, when bidder i
bids at bi, its utility can be 0 or ub

i = vi−bq+1. However,
when bidding at vi, it will be an eligible bidder for sure
with uv

i = vi − bq+1. So we can claim that uv
i ≥ ub

i .
• Case 5: vi > bq+1 > bi. Because bi < bq+1, bidder i

will not be an eligible bidder when bidding at bi and thus
ub
i = 0. However, bidder i will be satisfied when bidding

at vi. Hence, ub
i < uu

i = vi − bq+1.
• Case 6: bi > bq+1 > vi. When bidder i bids truthfully, it

will not be an eligible bidder and thus uv
i = 0. It will be

satisfied when misreporting the bid, but ub
i = vi−bq+1 <

0. Hence, ub
i < uv

i .
• Case 7: bq+1 = bi > vi. When bidding at bi, if bidder i is

selected as an eligible bidder, the utility ub
i = vi−bq+1 <

0. When bidding at vi, bidder i will not be eligible bidder
and thus uv

i = 0.
• Case 8: bq+1 > bi > vi. Bidder i will not be satisfied no

matter it bids at bi or vi, so ub
i = uv

i = 0.
• Case 9: bq+1 ≥ vi > bi. The subcases of this case are

similar to Cases 7 and 8.

In summary, if all eligible bidders can be satisfied by the
incoming idle channels, we show that a bidder achieves
maximum utility when bidding truthfully. This completes the
proof.

We next consider the case where only some of the eligible
bidders can be satisfied due to the limited number of idle chan-
nels during one auction time period. In the winner selection
and channel allocation phase, if a greedy allocation method
(based on the per-channel bids) is adopted, an eligible bidder is
highly motivated to improve its bid to obtain a higher rank so
as to get allocated earlier in the eligible bidder set. Therefore,
the order of allocation must be bid-independent.

Lemma 2. When not all eligible bidders can be satisfied, a
bidder cannot misreport the per-channel bid to increase its
utility.

Proof: Assume there does not exist a sufficient number
of idle channels that can satisfy all eligible bidders during the
online allocation. Thus, all eligible bidders have the motivation
to get allocated earlier to prevent it encountering resource
deficiency, which will lead to zero utility. In our algorithm,
we randomly permutate the sorted list of eligible bidders to
disrupt the order of allocation among them such that the order
of allocation is independent of the bid values of all eligible
bidders. Hence, an eligible bidder cannot overbid to increase
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the probability of getting allocated earlier, i.e., overbidding
will not help to increase its utility. On the other hand, by
underbidding, an eligible bidder may lose the opportunity to
get allocated and its utility will be zero.

As shown in Lemma 1, even if the channel supply is
sufficient, an ineligible bidder cannot increase its utility by
misreporting bid. Thus, we omit the discussions with respect
to ineligible bidders here.

Theorem 3. Under the dynamic channel supply, the proposed
spectrum auction for the single-unit case is truthful.

Proof: By combining Lemmas 1 and 2, we can conclude
that the proposed spectrum auction scheme for the single-unit
case is truthful.

Analysis of fairness: The following theorem shows the
fairness of our spectrum auction scheme.

Theorem 4. Under the dynamic channel supply, the proposed
spectrum auction achieves price fairness.

Proof: In our algorithm, each winner will pay bq+1 for one
channel it gets, i.e., the per-channel payments are the same for
all winners. According to Definition 2, our spectrum auction
scheme for the single-unit case achieves fair pricing.

Analysis of optimality: The following theorem characterizes
the approximation ratio.

Theorem 5. Under dynamic channel supply, the proposed
spectrum auction for the single-unit case can achieve a log n
approximation to the optimal social welfare.

Proof: We first consider the optimal allocation that
achieves the maximized social welfare. Let P denote the
set of all possible random permutations for all bidders, Pk

denote the kth permutation. Because the number of selling
items is determined by the allocation results, we use Rk to
denote the number of selling items for the kth permutation.
Let Rmin = min {Rk|Pk ∈ P} be the minimum number
of selling items among all possible permutations. Since the
winner selection (i.e., random permutation of eligible bidders)
is a randomized scheme and the number of selling items is
uncertain, by using Rmin, we can guarantee that Rmin selling
items could be provided for any permutation or say resulting
allocation. We then adopt Rmin in our analysis to evaluate
the optimal solution by taking all possible permutations and
interference constraints between bidders into account. We
denote the social welfare of the Rmin highest bidders by

S-OPTRmin
=

∑Rmin

i=1 vi. In eligible bidder division, q is chosen
randomly from {21, 22, . . . , 2i, . . . , n} to divide all bidders
into eligible bidders and ineligible bidders. It is easy to see that
the probability of choosing each possible value of q is 1/ log n.
In the following, we show that it is sufficient to analyze two
special cases to derive the approximation ratio.

• Case 1: Rmin < q ≤ 2Rmin. In this case, at least half of
the q bidders will be selected as winners. Because Rmin

winners are randomly chosen among eligible bidders, the
expectation of the social welfare is Rmin

q ·S-OPTq . When

Rmin < q ≤ 2Rmin, the social welfare is equal to or greater
than 1

2S-OPTq .

• Case 2: 1
2Rmin < q ≤ Rmin. In this case, there exists a

surplus of selling items to be allocated to eligible bidders,
so all eligible bidders will be satisfied. The social welfare
thus is S-OPTq .

We denote the social welfares of the case 1 and the case
2 by SW1 and SW2, respectively. In case 1, because q >
Rmin, we have SW1 ≥ 1

2S-OPTq > 1
2S-OPTRmin

. In case

2, because q > 1
2Rmin and vis are sorted in a non-increasing

order, we have SW2 = S-OPTq > 1
2S-OPTRmin

. Thus, the
social welfare of the proposed spectrum auction scheme in
expectation is lower-bounded by

E[SW ] = (1/ log n) · (
logn∑
i=1

SWi) (1)

≥ (1/ log n) · (SW1 + SW2)

> (1/ log n) · (1
2
S-OPTRmin

+
1

2
S-OPTRmin

)

= (1/ log n) · S-OPTRmin

C. Spectrum Auction with Dynamic Supply: The Multi-unit
Case

In this section, we discuss the multi-unit case where each
bidder may demand more than one channels. In the following,
we will show that the spectrum auction design for multi-unit
case requires us to tackle many unique challenges.

Similar to the single-unit case, during initialization, we first
sort all bidder requests by their per-channel bids in a non-
increasing order B = {[b1, d1], [b2, d2], . . . , [bn, dn]}, where
di denotes the channel demand of bidder i. However, we will
represent each original bidder by a set of virtual bidders, i.e.,
a bidder who demands di channels will be convert into di
virtual bidders, each of which demands only one channel.
Each virtual bidder inherits the interference constraints of
its own father, i.e., the original bidder, and conflicts with
other virtual bidders generated from the same original bidder.
Obviously, the virtual request can be represented as Bv =
{b11, . . . , bd1

1 , b12, . . . , b
d2
2 , . . . , b1n, . . . , b

dn
n }, and the number of

virtual bidders is m =
∑n

i=1 di. Follow the auction design
of the single-unit case, we select a random q uniformly
from {21, 22, . . . , 2i, . . . ,m}, where the q top-ranking virtual
bidders in Bv will be eligible virtual bidders. Due to the
construction of Bv , it is easy to see that the top-ranked q
virtual bidders are corresponding to a set of top-ranked original
bidders in B. Then, we perform the bidder grouping based on
eligible virtual bidders.

After initialization, the winner selection is executed as
follows. Firstly, to ensure a winning bidder’s multi-unit de-
mand can be satisfied, we perform the random permutation
over original bidders instead of virtual bidders, generating B′.
When idle channels arrive, we propose to satisfy the eligible
original bidders in sequence according to B′. Specifically, we
allocate channel supply to virtual bidders of an eligible original
bidder, and an eligible original bidder can be satisfied when its
corresponding virtual bidders are satisfied. Then, we choose
the next eligible original bidder for channel allocation. In

250



the winner selection and channel allocation process, like the
operations in the single-unit case, we still need to check if
the group a virtual bidder belongs to is an assigned one or an
unassigned one, based on which we activate the virtual bidder
before allocating it an idle channel. Due to the space limitation,
we will not go into details.

We next discuss the pricing of multi-unit demand spectrum
users. We show that if we follow the same pricing strategy
by charging all winning virtual bidders at bq+1, spectrum
users may have the motivation to improve their utility by
misreporting their bids.

An illustrating example. Assume there are three bidders
A,B and C, with channel demands dA = 3, dB = 2, and
dC = 1, respectively. Their per-channel valuations or say true
per-channel bids are vA = 3, vB = 2 and vC = 1. If the
number of eligible virtual bidders is chosen as q = 4, all the
three virtual bidders of A (A1, A2, A3) and one virtual bidder
of B (B1) are selected as eligible virtual bidders. Following
the single-unit case, all the winners will pay at the bid of the
q + 1th virtual bidder. Thus, pA1

= pA2
= pA3

= bB2
= 2,

and the utility of A is

uA = 3 · vA − 3 · bB2
= 9− 3 · 2 = 3.

However, if bidder A underbids at 1.1 for each channel,
the q + 1th virtual bidder falls into the virtual bidders of A.
The resulting utility of bidder A is

uA = 2 · vA1
− 2 · bA3

= 6− 2 · 1.1 = 3.8.

As can be seen, bidder A is partially satisfied and obtains
a higher utility by manipulating its bid. In the following,
we determine the per-channel price for each eligible original
bidder and show that their prices are almost the same. We first
give two important notations.

xj(q) – Given a randomly-chosen q, it represents the
number of channels a winning original bidder j can get at
most.

x
(−i)
j (q) – Given a randomly-chosen q, it represents the

number of channels a winning original bidder j can get at
most when bidder i does not participate the auction.

For an ineligible or say a losing bidder j, we define

xj(q) = x
(−i)
j (q) = 0. Then, before channel allocation, we

can compute the per-channel price for each winning original
bidder in advance as

pi =

∑n
j �=i x

(−i)
j (q) · bj −

∑n
j �=i xj(q) · bj

xi(q)
. (2)

Next, we analyze the properties of our spectrum auction
scheme for multi-unit demand case.

Analysis of fairness: Different from the single-unit case
where all winners pay exactly the same (per-channel) price
for homogeneous channels, in the multi-unit case we show
the per-channel prices for all winners are almost the same for
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Fig. 3. The illustration of a bidder’s payment.

homogeneous channels. Based on Eq. (2), we can derive the
total payment of bidder i as

xi(q) · pi =
n∑

j �=i

x
(−i)
j (q) · bj −

n∑
j �=i

xj(q) · bj . (3)

Fig. 3 shows the distribution of channel demands when bidder i
does (in blue) and does not (in orange) participate the auction.
In conjunction with Eq. (3), it can be seen that the total
payment of bidder i (i.e., xi(q) · pi) is the social welfare
generated from bidders in the “orange” area [q, q + di]. Thus,
the per-channel price for bidder i can be considered as the
average of bids of bidders located in this area, i.e., the ratio
of the social welfare generated from bidders in the “orange”
area to di.

In our auction design, bidders in the “orange” area [q, q+
di] are sorted by their per-channel bids. When per-channel
bids of spectrum users are distributed uniformly at random,
for bidders i and j with demands di �= dj , the average bids of
bidders located in the di-length orange area and the dj-length
orange area are pretty close to each other. Assume there are
100 bidders, whose per-channel bids are randomly distributed
over (0, 1] and demands are randomly chosen from {1, 2, 3}.
We select a random q from {21, 22, . . . , 2i, . . . ,m}, where m
is the total number of demands of all bidders. Fig. 4 shows
the per-channel price for all winners are almost the same.

Analysis of truthfulness: In the following, we first prove
our auction design has individual rationality, based on which
we show eligible bidders (whether satisfied or not) cannot gain
any benefits by untruthful bidding.

Lemma 6. Our spectrum auction scheme for the multi-unit
case achieves individual rationality, i.e., no winning original
bidder pays more than its total bid for the allocated channels:
xi(q) · bi ≥ xi(q) · pi or ui ≥ 0.

Proof: If bidder i does not get allocated, then xi(q) = 0,
the lemma holds. Otherwise, since we sort bidders by their
per-channel bids, based on which we select eligible virtual
bidders, it is easy to see the social welfare

∑n
i=1 xi(q) · bi ≥∑n

j �=i x
(−i)
j (q) · bj . Thus, we have
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n∑
i=1

xi(q) · bi ≥
n∑

j �=i

x
(−i)
j (q) · bj

n∑
j �=i

xj(q) · bj + xi(q) · bi ≥
n∑

j �=i

x
(−i)
j (q) · bj

xi(q) · bi ≥
n∑

j �=i

x
(−i)
j (q) · bj −

n∑
j �=i

xj(q) · bj

xi(q) · bi ≥ xi(q) · pi
(4)

Hence, Lemma 6 holds.

We next prove that our spectrum auction scheme for multi-
unit demand users is truthful, i.e., spectrum users cannot
increase it’s utility by bidding untruthfully. Due to Eq. (2),
we can compute the utility of bidder i as

ui = xi(q) · vi − xi(q) · pi (5)

= xi(q) · vi −
n∑

j �=i

x
(−i)
j (q) · bj +

n∑
j �=i

xj(q) · bj .

In Eq. (5), because the second item
∑n

j �=i x
(−i)
j (q) · bj does

not depend on i (it denotes the social welfare where bidder
i does not participate the auction), we could ignore it in the
analysis below. Thus, we have

ui ∼ vi · xi(q) +

n∑
j �=i

xj(q) · bj , (6)

where ∼ means ui only relates to the right two terms.

In the following, we first analyze the case where there
exists a sufficient number of idle channels such that all eligible
(original) bidders can be satisfied.

Lemma 7. A fully-satisfied eligible bidder cannot increase its
utility by manipulating its bid.

Proof: A fully-satisfied eligible original bidder i gets di
channels it demands. If it manipulates its bid, there will be
three possible cases: i) Bidder i remains to be a fully-satisfied
eligible bidder, then x′i(q) = xi(q). According to our winner
selection process, it will not affect xj(q)(j �= i) of any other
winning bidder j. So,

∑n
j �=i xj(q) ·bj remains the same. Then,

according to Eq. (6), we have u′i = ui; ii) Bidder i becomes
a partially-satisfied eligible bidder (by underbidding), then
x′i(q) < xi(q) and

∑n
j �=i x

′
j(q) · bj >

∑n
j �=i xj(q) · bj . Given

q, this implies some ineligible bidders get the opportunity to
join the eligible bidder set. Obviously, the per-channel bids
of these bidders are smaller than the per-channel valuation of
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Fig. 4. The comparison of per-channel payments of all winners.

bidder i. Thus, we have

n∑
j �=i

x′j(q) · bj −
n∑

j �=i

xj(q) · bj ≤ vi · xi(q)− vi · x′i(q)

vi · x′i(q) +
n∑

j �=i

x′j(q) · bj ≤ vi · xi(q) +
n∑

j �=i

xj(q) · bj .

Based on Eq. (6), the above inequality can be expressed as
u′i ≤ ui; iii) Bidder i becomes an ineligible bidder, the utility
u′i = 0. According to Lemma 6, ui ≥ 0. Thus, we have ui ≥
u′i.

Lemma 8. A partially-satisfied eligible original bidder cannot
increase its utility by manipulating its bid.

Proof: In our algorithm, since q is randomly chosen and
pre-determined before the start of spectrum allocation, there
may exist one partially-satisfied eligible original bidder i. If
it manipulates its bid, there will be three possible cases: i)
Bidder i remains to be a partially-satisfied eligible bidder. then
x′i(q) = xi(q). Similarly to the proof of case 1 in Lemma 7,
we have u′i = ui; ii) Bidder i becomes a fully-satisfied eligible
bidder (by overbidding), then we have x′i(q) > xi(q) and∑n

j �=i x
′
j(q) · bj <

∑n
j �=i xj(q) · bj . The difference between∑n

j �=i xj(q) · bj and
∑n

j �=i x
′
j(q) · bj is the total bids of virtual

bidders who are preempted by virtual bidders of bidder i.
Given q, the number of preempted channels is equal to the
number of channels bidder i additionally obtain by preemption.
Obviously, the per-channel bids of bidders being preempted
are larger than the per-channel valuation of bidder i. Thus, we
have

n∑
j �=i

xj(q) · bj −
n∑

j �=i

x′j(q) · bj ≥ vi · x′i(q)− vi · xi(q)

vi · xi(q) +
n∑

j �=i

xj(q) · bj ≥ vi · x′i(q) +
n∑

j �=i

x′j(q) · bj .

Based on Eq. (6), the above inequality can be expressed as
ui ≥ u′i; iii) Bidder i becomes an ineligible bidder, the utility
u′i = 0. According to Lemma 6, ui ≥ 0. Thus, we have ui ≥
u′i.
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Lemma 9. An ineligible bidder cannot increase its utility by
manipulating its bid.

Proof: An ineligible bidder i will not get allocated, then
we have xi(q) = 0 and ui = 0. If an ineligible bidder
untruthfully bids (by overbidding) to join the eligible bidder
set, some eligible bidders will become ineligible and lose their
bids. Obviously, the average per-channel bid of these losing
bidders is greater than or equal to the per-channel valuation
of bidder i (otherwise they would be ineligible bidders when
bidder i bids truthfully). Thus, we have

∑n
j �=i xj(q) · bj −

∑n
j �=i x

′
j(q) · bj

x′i(q)
≥ vi (7)

Based on Eq. (6), we can compute the utility difference

u′i − ui = vi · x′i(q) +
n∑

j �=i

x′j(q) · bj −

(vi · xi(q) +

n∑
j �=i

xj(q) · bj).

Because xi(q) = 0 and ui = 0, we have

u′i = vi · x′i(q) +
n∑

j �=i

x′j(q) · bj −
n∑

j �=i

xj(q) · bj .

Based on Eq. (7), we have u′i ≤ 0.

We next analyze the case where not all eligible (original)
bidders can be satisfied.

Lemma 10. When not all eligible original bidders can be
satisfied, an original bidder cannot misreport the per-channel
bid to increase its utility.

Proof: The proof is similar to Lemma 2, and thus we omit
the details of the proof here.

Theorem 11. Under the dynamic channel supply, the proposed
spectrum auction for the multi-unit case is truthful.

Proof: By combining Lemmas 7, 8, 9 and 10, it can be
see that any bidder has no incentive to misreport their bids
to improve its utility. According to Definition 1, our spectrum
auction scheme for the multi-unit demand case is truthful.

Analysis of optimality: The following theorem characterizes
the approximation ratio.

Theorem 12. Under the dynamic channel supply, the proposed
spectrum auction for the multi-unit case can achieve ( T

Q+1 +
1
2 ) logm approximation to the optimal social welfare.

Proof: Similar to the single-unit case, we first consider the
optimal allocation that achieves the maximum social welfare.
To obtain the optimal allocation, we assume that all original
bidders are eligible to be allocated and there exist R′min selling
items such that R′min virtual bidders will be satisfied. Similar to
the proof of Theorem 5, we use R′min = min {R′k|Pk ∈ P} to

denote the minimum number of selling items for all possible
permutations (allocations).

Assume the R′min virtual bidders are corresponding to
Rmin original bidders, we denote the optimal social wel-

fare by M -OPT
(R′

min)
Rmin

. So, M -OPT
(R′

min)
Rmin

= S-OPTR′
min

=∑R′
min

i=1 v′i, where v′i is the valuation of virtual bidder i. In
our spectrum auction scheme, we randomly choose a q from
{21, 22, . . . , 2i, . . . ,m}, where m is the total demands of all
bidders. It is easy to see that the probability of choosing each
possible value of q is 1/ logm. Like the optimal solution, we
assume the q virtual bidders are corresponding to at most Q
original bidders. Let P

(E) denote the set of permutations on
eligible bidders, P (E)

k denote the kth eligible bidder permutation
and Tk denote the size of the largest set of satisfied (original)
bidders in P (E)

k , whose sum of demands does not exceed R′min.
Note that, because original bidders will have different channel

demands, we use T = min
{
Tk|P (E)

k ∈ P
(E)

}
to denote the

minimum Tk for all possible permutations. This is also to
guarantee that T original bidders could be satisfied for all
possible permutations (allocations). In the following, we show
it is sufficient to analyze two possible cases to derive the
approximation ratio with respect to the optimal social welfare.

• Case 1: R′min < q ≤ 2R′min. In this case, we select winners
from original bidders after mapping virtual bidders to
original bidders. Since the last original bidder in Rmin

bidders may be a partially-satisfied bidder, we assume one
of the original bidder in Q is divided into two new original
bidders. Thus, we at least select T original bidders from
Q + 1 original bidders. Due to the random selection
of eligible bidders, the expectation of social welfare is

greater than T
Q+1M -OPT

(q)
Q .

• Case 2: 1
2R

′
min < q ≤ R′min. In this case, there exist a

surplus of selling items to be allocated to eligible virtual
bidders. Thus, all of the eligible virtual bidders can be

satisfied. The social welfare is M -OPT
(q)
Q .

We denote the social welfare of the case 1 and the case 2
by SW1 and SW2, respectively. In case 1, because q > R′min,

M -OPT
(R′

min)
Rmin

= S-OPTR′
min

and M -OPT
(q)
Q = S-OPTq , we

have SW1 ≥ T
Q+1M -OPT

(q)
Q > T

Q+1M -OPT
(R′

min)
Rmin

. In case

2, because q > 1
2R

′
min and v′i’s are sorted in a non-increasing

order, SW2 = M -OPT
(q)
Q > 1

2M -OPT
(R′

min)
Rmin

. Thus, the
social welfare of the proposed spectrum auction scheme in
expectation is lower-bounded by

E[SW ] = (1/ logm) · (
logm∑
i=1

SWi)

≥ (1/ logm) · (SW1 + SW2)

≥ (1/ logm) · ( T

Q+ 1
M -OPT

(R′
min)

Rmin
+

1

2
M -OPT

(R′
min)

Rmin
)

= (1/ logm) · ( T

Q+ 1
+

1

2
)M -OPT

(R′
min)

Rmin
.
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(a) Coefficient of variation.
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(b) Winning bidder ratio.
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(c) Eligible bidder satisfaction ratio.
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(d) Coefficient of variation.
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(e) Winning bidder ratio.
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(f) Eligible bidder satisfaction ratio.

Fig. 5. Comparing our spectrum auction schemes to the existing benchmarks. Top 3 figures assume single-unit demand and bottom 3 are for multi-unit demand.

IV. EXPERIMENTAL RESULTS

In this section, we perform experiments to evaluate the
performance of our spectrum auction schemes under a dynamic
supply of idle channels. We explore the unique properties
of our spectrum auction schemes by comparing them to two
well-known spectrum auction mechanisms VERITAS [1] and
SMALL [3].

A. Methodology

In our experiments, the number of bidders varies from
50 to 400. Bidders are randomly distributed in the area of
2000 × 2000 square metres and the conflict range for each
bidder is 400 meters. As shown in previous analysis, the
efficiency performance bound derived above does not rely on
the distribution of the arrival of idle channels. Thus, the use of
any distribution in our experiments will not affect the results.
In the single-unit case, each bidder requests one channel,
while in the multi-unit case each bidder requests multiple
channels. For each bidder, the per-channel bid is randomly
distributed over (0, 1] [1], [3]. All experimental results are
averaged over 200 rounds. For bidder grouping, we divide
eligible bidders into interference-free groups using the greedy
grouping algorithm in [14].

The highlight of our spectrum auction mechanisms is the
realization of fair pricing and truthful bidding simultaneously
in a practical setting where idle channels are supplied to
spectrum users in a dynamic manner. In addition, our spectrum
auction designs are randomized mechanisms. To carefully
characterize the unique properties, we use the following three
customized performance metrics.

• Coefficient of Variation. Coefficient of variation is a
statistical measure of the dispersion of data points in a

data series around the mean, and it is defined as the ratio
of the standard deviation σ to the mean μ, i.e., Cv = σ

μ .
We compute Cv of per-channel payments of all winners to
evaluate the fairness of pricing. Obviously, the lower Cv

the better fairness can be achieved, and it means that there
exist less differences among the per-channel payments of
all winners.

• Winning Bidder Ratio. Winning bidder ratio is used to
evaluate if all the winners are the ones that have the
highest per-channel bids among all bidders, and it is
defined as the ratio of the number of winners with the
highest bids (among all bidders) to the number of winners.
In fact, this metric reflects the fairness of allocation,
which means bidders with higher per-channel bids should
be satisfied when idle channels are arriving dynamically.

• Eligible Bidder Satisfaction Ratio. Eligible bidder satis-
faction ratio is used to evaluate if all eligible bidders can
be satisfied given an unknown supply of idle channels,
and it is defined as the percentage of winners or say
satisfied bidders among all eligible bidders.

Note that our mechanisms randomly choose the number of
eligible bidders and only an eligible bidder has the oppor-
tunity to get allocated. This characteristic is distinct from
the existing spectrum auction schemes such as VERITAS [1]
and SMALL [3]. So, we do not compare the eligible bidder
satisfaction ratio of our solutions to the existing ones. In ad-
dition, VERITAS and SMALL can only support single-round
offline spectrum auction, so we carefully make an extension of
them to obtain a fair comparison. For VERITAS, we perform
channel allocation once some idle channels arrive and then
do the pricing for winners. The critical value is computed for
the unsatisfied bidders in previous rounds while taking into
account the inference constraints caused by previous winners.
For SMALL, we randomly generate channel reserve price
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for each coming idle channel from [0, 2) following the same
assumption made in [3]. When idle channels arrive, we run
SMALL for all unused channels and unallocated groups.

B. Coefficient of Variation

Fig. 5 (a) and (d) compare Cvs of winners’ payments in
VERITAS, SMALL and our schemes against the number of
spectrum users. As can be seen, despite of the increase of
spectrum users our spectrum auction schemes achieve zero
Cv in the single-unit demand case and almost zero Cv in the
multi-unit demand case. This implies that in comparison to
VERITAS and SMALL, our spectrum auction design indeed
provide fair pricing for spectrum users bidding for homoge-
nous channels.

C. Winning Bidder Ratio

Fig. 5 (b) and (e) compare the winning bidder ratios
of VERITAS, SMALL and our schemes against the number
of spectrum users. The results show that VERITAS and
our schemes have similar performance, ensuring that most
of bidders with higher bids will become winners. This is
because VERITAS adopts a greedy allocation strategy and our
schemes also choose q eligible bidders with the highest bids
for future allocation. The small loss of performance is due
to the randomization of eligible bidders during the channel
allocation process. SMALL achieves a relatively lower ratio
since it allocates idle channels based on the group bids, which
relates to the bidder with the lowest bid in the group. In some
cases, it is hard to get some bidders with higher bids allocated
since the groups they belong to have very low group bids.

D. Eligible Bidder Satisfaction Ratio

Different from the existing spectrum auction schemes (in-
cluding VERITAS and SMALL), the winner selection and
channel allocation of our schemes is randomized to select so-
called eligible bidders, which obtain the opportunities to get
allocated. To obtain the percentage of winners or say satisfied
bidders among all eligible bidders, we evaluate the eligible
bidder satisfaction ratio under different idle channel supplies.
In Fig. 5 (c) and (f), as expected, the larger the bidder set
the larger number of idle channels is required to satisfy all
eligible bidders. We can also observe that a small number of
idle channels can satisfy a larger number of eligible bidders
due to spectrum reusability.

V. RELATED WORK

Spectrum auction, which allows an authority to sell licenses
for signal transmission over specific bands, allocates scarce
spectrum resources quickly and efficiently to the users that
value them the most. In contrast to the auction of other
digital goods, spectrum has a very unique characteristic called
reusability due to the inherent nature of interference in radio
transmissions. That is, users whose radio transmissions do
not interfere each other in different geographic locations are
able to share the same spectrum simultaneously. Obviously,
spectrum/frequency reusability enables the communication
system to increase both coverage and capacity. However, it
also poses new challenges for the spectrum auction design,

e.g., the reusability makes it hard to achieve a truthful de-
sign and to provide bounded performance in terms of social
welfare/revenue. Recently, spectrum auctions have received
extensive research efforts in the literature [1]–[7]. In [1], Zhou
et al. utilized the greedy allocation together with the critical
value based pricing in [15] to design a truthful and computa-
tionally efficient spectrum auction mechanism under the bidder
interference constraints. In [5], the same authors proposed
Athena, a collusion-resistant spectrum auction mechanism
using APM [16]. By first dividing bidders into multiple non-
overlapping segments based on the interference constraints,
the spectrum auction problem is transferred to a single-unit
auction problem with an unlimited frequency/channel sup-
ply and the partition independence property of bids enables
cheating-resistance. Similar models of spectrum auction [3],
[4], [7] were studied and the resulting auction schemes with
different design goals have been proposed in recent years.
Huang et al. [4] presented a truthful and privacy-preserving
spectrum auction mechanism, called SPRING, which used
two cryptographic tools order-preserving symmetric encryption
(OPSE) [17] and oblivious transfer (OT) [18] to prevent
attackers from learning private information of bidders. Wu
et al. [3] proposed a mechanism, called SMALL, to adapt to
bidders with multiple radios by dividing bidders into segments
and setting a reserve price for channels such that bidders
cannot benefit by manipulating their own bids. These mod-
els addressed the problem of spectrum reusability by using
the graph coloring algorithm to divide bidders into different
groups [8], and the smallest bid is selected in each group as
a group bid for resisting bidder misreport. In [7], Chen et al.
proposed TAMES, a truthful double auction for bidders with
heterogeneous demands and showed that the auctioneer can
choose different graph coloring algorithms for different goals.
While theoretically sound, these spectrum auction mechanisms
do not provide performance bounds to characterize the system
performance in terms of social welfare or revenue. In addition,
they only focus on the offline auction model, where the set of
users (i.e., channel bidders) and the set of goods (i.e., channels)
are pre-determined before the start of auction process.

Recently, researches on online spectrum auction models
have aroused much interest [9]–[11]. In general, there are
two types of online spectrum auction models: spectrum users
arrive in an online manner and spectrum supplies arrive in
an online manner. In [9], Deek et al. made an extension
of [1] and investigated the online multi-good selling scenario
in [19]. Considering the online arrival of users, the authors
proposed an efficient online spectrum auction mechanism with
preemption, enabling the resistance of both bid- and time-based
cheating. However, it does not provide a performance bound
on revenue with respect to the optimal solution in general.
Under the same online auction model, Xu et al. [10] proposed
TOFU, another online semi-truthful spectrum auction scheme
with channel preemption. To carefully characterize the auction
model, the authors derived competitive ratios under different
application scenarios. Different from the previous solutions,
TOFU achieves only semi-truthfulness, where users are able
to underbid to gain self-benefits. In practice, while the set of
bidders is known to the auctioneer, the exact number of items
for sale may be uncertain, e.g., the spectrum auctioneer allows
users to bid for idle channels released dynamically by other
spectrum users. Thus, another online model involves the online
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arriving spectrum supplies during auction. However, online
spectrum allocation design on this model has received limited
attention so far. Besides, the dynamic release of channels to
users also arouses the question of designing a fair pricing
scheme. Almost all existing spectrum auction models consider
homogeneous channels, but the payment for a channel will
be quite different. From the perspective of users, it is unfair
for them to make different payments for the same goods
especially when idle channels are arriving online. To solve
this problem, a line of studies on envy-free auction design
has been proposed [20]–[23], where all users can obtain the
same goods by the same payment. These studies focus on
different goals, including maximizing the total profit [20],
proving the competitive ratio [21], pricing optimally on single-
minded combinatorial auctions [22] and considering distribu-
tional information in the auction design [23].

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we investigated the problem of allocating
channels to spectrum users in a setting where the supply of
idle channels are unknown, with the goal of maximizing social
welfare. We designed a suite of truthful and efficient spectrum
auction schemes, providing different users with fair pricing
for homogenous channels and guarantee bounded performance
with respect to the optimal social welfare. We analytically
showed the truthfulness and approximation ratio of our spec-
trum auction designs. Our experimental results validated our
analysis and demonstrated the desirable properties of our
proposed designs.

To our best knowledge, our current work represents the
first effort to formulate and investigate the truthful frequency
allocation problem with a dynamic spectrum supply. Several
important open problems remain for future research. First,
in our spectrum auction scheme for the multi-unit demand
case, to achieve truthful auction design and maximize the
social welfare, we weaken the strict demand requirement by
assuming that spectrum users are not strictly single-minded.
In our future work, it is important to explore the case where
all users are single-minded, i.e., a user is willing to pay only
if it is fully-satisfied. We still aim to achieve both efficiency
and truthfulness for the proposed mechanisms. Second, in
many case studies of auctions run in practice, collusion is
considered as a serious problem. Thus, we propose to design
collusion-resistant mechanisms for online spectrum auction
with a dynamic supply while achieving fair pricing, strategy-
proofness and bounded performance.
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