
1

Towards Secure and Dependable Storage
Services in Cloud Computing

Cong Wang, Student Member, IEEE, Qian Wang, Student Member, IEEE, Kui Ren, Member, IEEE,
Ning Cao, Student Member, IEEE, and Wenjing Lou, Senior Member, IEEE

Abstract —Cloud storage enables users to remotely store their data and enjoy the on-demand high quality cloud applications without
the burden of local hardware and software management. Though the benefits are clear, such a service is also relinquishing users’
physical possession of their outsourced data, which inevitably poses new security risks towards the correctness of the data in cloud.
In order to address this new problem and further achieve a secure and dependable cloud storage service, we propose in this paper
a flexible distributed storage integrity auditing mechanism, utilizing the homomorphic token and distributed erasure-coded data. The
proposed design allows users to audit the cloud storage with very lightweight communication and computation cost. The auditing result
not only ensures strong cloud storage correctness guarantee, but also simultaneously achieves fast data error localization, i.e., the
identification of misbehaving server. Considering the cloud data are dynamic in nature, the proposed design further supports secure
and efficient dynamic operations on outsourced data, including block modification, deletion, and append. Analysis shows the proposed
scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks.

Index Terms —Data integrity, dependable distributed storage, error localization, data dynamics, Cloud Computing

✦

1 INTRODUCTION

S EVERAL trends are opening up the era of Cloud
Computing, which is an Internet-based development

and use of computer technology. The ever cheaper and
more powerful processors, together with the software as
a service (SaaS) computing architecture, are transforming
data centers into pools of computing service on a huge
scale. The increasing network bandwidth and reliable yet
flexible network connections make it even possible that
users can now subscribe high quality services from data
and software that reside solely on remote data centers.

Moving data into the cloud offers great convenience
to users since they don’t have to care about the com-
plexities of direct hardware management. The pioneer
of Cloud Computing vendors, Amazon Simple Stor-
age Service (S3) and Amazon Elastic Compute Cloud
(EC2) [2] are both well known examples. While these
internet-based online services do provide huge amounts
of storage space and customizable computing resources,
this computing platform shift, however, is eliminating
the responsibility of local machines for data maintenance
at the same time. As a result, users are at the mercy
of their cloud service providers for the availability and
integrity of their data [3]. On the one hand, although
the cloud infrastructures are much more powerful and
reliable than personal computing devices, broad range

• Cong Wang, Qian Wang, and Kui Ren are with the Department of
Electrical and Computer Engineering, Illinois Institute of Technology,
Chicago, IL 60616. E-mail: {cong,qian,kren}@ece.iit.edu.

• Ning Cao and Wenjing Lou are with the Department of Electrical and
Computer Engineering, Worcester Polytechnic Institute, Worcester, MA
01609. E-mail: {ncao,wjlou}@ece.wpi.edu.

A preliminary version [1] of this paper was presented at the 17th IEEE
International Workshop on Quality of Service (IWQoS’09).

of both internal and external threats for data integrity
still exist. Examples of outages and data loss incidents
of noteworthy cloud storage services appear from time
to time [4]–[8]. On the other hand, since users may
not retain a local copy of outsourced data, there exist
various incentives for cloud service providers (CSP) to
behave unfaithfully towards the cloud users regarding
the status of their outsourced data. For example, to
increase the profit margin by reducing cost, it is possible
for CSP to discard rarely accessed data without being
detected in a timely fashion [9]. Similarly, CSP may even
attempt to hide data loss incidents so as to maintain
a reputation [10]–[12]. Therefore, although outsourcing
data into the cloud is economically attractive for the cost
and complexity of long-term large-scale data storage,
its lacking of offering strong assurance of data integrity
and availability may impede its wide adoption by both
enterprise and individual cloud users.

In order to achieve the assurances of cloud data in-
tegrity and availability and enforce the quality of cloud
storage service, efficient methods that enable on-demand
data correctness verification on behalf of cloud users
have to be designed. However, the fact that users no
longer have physical possession of data in the cloud
prohibits the direct adoption of traditional cryptographic
primitives for the purpose of data integrity protection.
Hence, the verification of cloud storage correctness must
be conducted without explicit knowledge of the whole
data files [9]–[12]. Meanwhile, cloud storage is not just a
third party data warehouse. The data stored in the cloud
may not only be accessed but also be frequently updated
by the users [13]–[15], including insertion, deletion, mod-
ification, appending, etc. Thus, it is also imperative to
support the integration of this dynamic feature into the



2

cloud storage correctness assurance, which makes the
system design even more challenging. Last but not the
least, the deployment of Cloud Computing is powered
by data centers running in a simultaneous, cooperated
and distributed manner [3]. It is more advantages for
individual users to store their data redundantly across
multiple physical servers so as to reduce the data in-
tegrity and availability threats. Thus, distributed proto-
cols for storage correctness assurance will be of most
importance in achieving robust and secure cloud storage
systems. However, such important area remains to be
fully explored in the literature.

Recently, the importance of ensuring the remote data
integrity has been highlighted by the following research
works under different system and security models [9]–
[19]. These techniques, while can be useful to ensure
the storage correctness without having users possessing
local data, are all focusing on single server scenario.
They may be useful for quality-of-service testing [20],
but does not guarantee the data availability in case
of server failures. Although direct applying these tech-
niques to distributed storage (multiple servers) could be
straightforward, the resulted storage verification over-
head would be linear to the number of servers. As
an complementary approach, researchers have also pro-
posed distributed protocols [20]–[22] for ensuring stor-
age correctness across multiple servers or peers. How-
ever, while providing efficient cross server storage verifi-
cation and data availability insurance, these schemes are
all focusing on static or archival data. As a result, their
capabilities of handling dynamic data remains unclear,
which inevitably limits their full applicability in cloud
storage scenarios.

In this paper, we propose an effective and flexible
distributed storage verification scheme with explicit dy-
namic data support to ensure the correctness and avail-
ability of users’ data in the cloud. We rely on erasure-
correcting code in the file distribution preparation to pro-
vide redundancies and guarantee the data dependability
against Byzantine servers [23], where a storage server
may fail in arbitrary ways. This construction drastically
reduces the communication and storage overhead as
compared to the traditional replication-based file distri-
bution techniques. By utilizing the homomorphic token
with distributed verification of erasure-coded data, our
scheme achieves the storage correctness insurance as
well as data error localization: whenever data corruption
has been detected during the storage correctness verifica-
tion, our scheme can almost guarantee the simultaneous
localization of data errors, i.e., the identification of the
misbehaving server(s). In order to strike a good balance
between error resilience and data dynamics, we further
explore the algebraic property of our token computa-
tion and erasure-coded data, and demonstrate how to
efficiently support dynamic operation on data blocks,
while maintaining the same level of storage correctness
assurance. In order to save the time, computation re-
sources, and even the related online burden of users,

we also provide the extension of the proposed main
scheme to support third-party auditing, where users can
safely delegate the integrity checking tasks to third-party
auditors and be worry-free to use the cloud storage
services. Our work is among the first few ones in this
field to consider distributed data storage security in
Cloud Computing. Our contribution can be summarized
as the following three aspects:

1) Compared to many of its predecessors, which only
provide binary results about the storage status across
the distributed servers, the proposed scheme achieves
the integration of storage correctness insurance and data
error localization, i.e., the identification of misbehaving
server(s).

2) Unlike most prior works for ensuring remote data
integrity, the new scheme further supports secure and
efficient dynamic operations on data blocks, including:
update, delete and append.

3) The experiment results demonstrate the proposed
scheme is highly efficient. Extensive security analysis
shows our scheme is resilient against Byzantine failure,
malicious data modification attack, and even server col-
luding attacks.

The rest of the paper is organized as follows. Section
II introduces the system model, adversary model, our
design goal and notations. Then we provide the detailed
description of our scheme in Section III and IV. Section V
gives the security analysis and performance evaluations,
followed by Section VI which overviews the related
work. Finally, Section VII concludes the whole paper.

2 PROBLEM STATEMENT

2.1 System Model

A representative network architecture for cloud storage
service architecture is illustrated in Figure 1. Three dif-
ferent network entities can be identified as follows:

• User: an entity, who has data to be stored in the
cloud and relies on the cloud for data storage and
computation, can be either enterprise or individual
customers.

• Cloud Server (CS): an entity, which is managed by
cloud service provider (CSP) to provide data storage
service and has significant storage space and com-
putation resources (we will not differentiate CS and
CSP hereafter.).

• Third Party Auditor (TPA): an optional TPA, who
has expertise and capabilities that users may not
have, is trusted to assess and expose risk of cloud
storage services on behalf of the users upon request.

In cloud data storage, a user stores his data through a
CSP into a set of cloud servers, which are running in a
simultaneous, cooperated and distributed manner. Data
redundancy can be employed with technique of erasure-
correcting code to further tolerate faults or server crash
as user’s data grows in size and importance. Thereafter,
for application purposes, the user interacts with the



3

cloud servers via CSP to access or retrieve his data.
In some cases, the user may need to perform block
level operations on his data. The most general forms of
these operations we are considering are block update,
delete, insert and append. Note that in this paper, we
put more focus on the support of file-oriented cloud
applications other than non-file application data, such
as social networking data. In other words, the cloud
data we are considering is not expected to be rapidly
changing in a relative short period.

As users no longer possess their data locally, it is of
critical importance to ensure users that their data are
being correctly stored and maintained. That is, users
should be equipped with security means so that they
can make continuous correctness assurance (to enforce
cloud storage service-level agreement) of their stored
data even without the existence of local copies. In case
that users do not necessarily have the time, feasibility or
resources to monitor their data online, they can delegate
the data auditing tasks to an optional trusted TPA of
their respective choices. However, to securely introduce
such a TPA, any possible leakage of user’s outsourced
data towards TPA through the auditing protocol should
be prohibited.

In our model, we assume that the point-to-point com-
munication channels between each cloud server and the
user is authenticated and reliable, which can be achieved
in practice with little overhead. These authentication
handshakes are omitted in the following presentation.

2.2 Adversary Model

From user’s perspective, the adversary model has to cap-
ture all kinds of threats towards his cloud data integrity.
Because cloud data do not reside at user’s local site but
at CSP’s address domain, these threats can come from
two different sources: internal and external attacks. For
internal attacks, a CSP can be self-interested, untrusted
and possibly malicious. Not only does it desire to move
data that has not been or is rarely accessed to a lower
tier of storage than agreed for monetary reasons, but it
may also attempt to hide a data loss incident due to
management errors, Byzantine failures and so on. For
external attacks, data integrity threats may come from
outsiders who are beyond the control domain of CSP,
for example, the economically motivated attackers. They
may compromise a number of cloud data storage servers
in different time intervals and subsequently be able to
modify or delete users’ data while remaining undetected
by CSP.

Therefore, we consider the adversary in our model has
the following capabilities, which captures both external
and internal threats towards the cloud data integrity.
Specifically, the adversary is interested in continuously
corrupting the user’s data files stored on individual
servers. Once a server is comprised, an adversary can
pollute the original data files by modifying or introduc-
ing its own fraudulent data to prevent the original data

D a t a F l o wA u d i t i n gd e l e g a t i o n
D a t a a u d i t i n g t o e n f o r c es e r v i c e ! l e v e l a g r e e m e n t

P u b l i c a u d i t i n g C l o u dS e r v e r sU s e r s
( o p t i o n a l )T h i r d P a r t y A u d i t o r

Fig. 1: Cloud storage service architecture

from being retrieved by the user. This corresponds to the
threats from external attacks. In the worst case scenario,
the adversary can compromise all the storage servers so
that he can intentionally modify the data files as long as
they are internally consistent. In fact, this is equivalent
to internal attack case where all servers are assumed
colluding together from the early stages of application
or service deployment to hide a data loss or corruption
incident.

2.3 Design Goals

To ensure the security and dependability for cloud data
storage under the aforementioned adversary model, we
aim to design efficient mechanisms for dynamic data
verification and operation and achieve the following
goals: (1) Storage correctness: to ensure users that their
data are indeed stored appropriately and kept intact
all the time in the cloud. (2) Fast localization of data
error: to effectively locate the malfunctioning server
when data corruption has been detected. (3) Dynamic
data support: to maintain the same level of storage
correctness assurance even if users modify, delete or
append their data files in the cloud. (4) Dependability:
to enhance data availability against Byzantine failures,
malicious data modification and server colluding attacks,
i.e. minimizing the effect brought by data errors or server
failures. (5) Lightweight: to enable users to perform
storage correctness checks with minimum overhead.

2.4 Notation and Preliminaries

• F – the data file to be stored. We assume that F
can be denoted as a matrix of m equal-sized data
vectors, each consisting of l blocks. Data blocks
are all well represented as elements in Galois Field
GF (2p) for p = 8 or 16.

• A – The dispersal matrix used for Reed-Solomon
coding.

• G – The encoded file matrix, which includes a set
of n = m + k vectors, each consisting of l blocks.

• fkey(·) – pseudorandom function (PRF), which is
defined as f : {0, 1}∗ × key → GF (2p).

• φkey(·) – pseudorandom permutation (PRP), which
is defined as φ : {0, 1}log2(ℓ) × key → {0, 1}log2(ℓ).



4

• ver – a version number bound with the index for
individual blocks, which records the times the block
has been modified. Initially we assume ver is 0 for
all data blocks.

• sver
ij – the seed for PRF, which depends on the file

name, block index i, the server position j as well as
the optional block version number ver.

3 ENSURING CLOUD DATA STORAGE

In cloud data storage system, users store their data in the
cloud and no longer possess the data locally. Thus, the
correctness and availability of the data files being stored
on the distributed cloud servers must be guaranteed.
One of the key issues is to effectively detect any unau-
thorized data modification and corruption, possibly due
to server compromise and/or random Byzantine failures.
Besides, in the distributed case when such inconsisten-
cies are successfully detected, to find which server the
data error lies in is also of great significance, since it can
always be the first step to fast recover the storage errors
and/or identifying potential threats of external attacks.

To address these problems, our main scheme for en-
suring cloud data storage is presented in this section.
The first part of the section is devoted to a review of
basic tools from coding theory that is needed in our
scheme for file distribution across cloud servers. Then,
the homomorphic token is introduced. The token compu-
tation function we are considering belongs to a family of
universal hash function [24], chosen to preserve the ho-
momorphic properties, which can be perfectly integrated
with the verification of erasure-coded data [21] [25].
Subsequently, it is shown how to derive a challenge-
response protocol for verifying the storage correctness as
well as identifying misbehaving servers. The procedure
for file retrieval and error recovery based on erasure-
correcting code is also outlined. Finally, we describe how
to extend our scheme to third party auditing with only
slight modification of the main design.

3.1 File Distribution Preparation

It is well known that erasure-correcting code may be
used to tolerate multiple failures in distributed storage
systems. In cloud data storage, we rely on this technique
to disperse the data file F redundantly across a set of
n = m + k distributed servers. An (m, k) Reed-Solomon
erasure-correcting code is used to create k redundancy
parity vectors from m data vectors in such a way that the
original m data vectors can be reconstructed from any m
out of the m+k data and parity vectors. By placing each
of the m+k vectors on a different server, the original data
file can survive the failure of any k of the m + k servers
without any data loss, with a space overhead of k/m.
For support of efficient sequential I/O to the original file,
our file layout is systematic, i.e., the unmodified m data
file vectors together with k parity vectors is distributed
across m + k different servers.

Let F = (F1, F2, . . . , Fm) and Fi = (f1i, f2i, . . . , fli)
T

(i ∈ {1, . . . , m}). Here T (shorthand for transpose) de-
notes that each Fi is represented as a column vector, and
l denotes data vector size in blocks. All these blocks are
elements of GF (2p). The systematic layout with parity
vectors is achieved with the information dispersal matrix
A, derived from an m×(m+k) Vandermonde matrix [26]:





1 1 . . . 1 1 . . . 1
β1 β2 . . . βm βm+1 . . . βn

...
...

. . .
...

...
. . .

...
βm−1

1 βm−1
2 . . . βm−1

m βm−1
m+1 . . . βm−1

n




,

where βj (j ∈ {1, . . . , n}) are distinct elements randomly
picked from GF (2p).

After a sequence of elementary row transformations,
the desired matrix A can be written as

A = (I|P) =





1 0 . . . 0 p11 p12 . . . p1k

0 1 . . . 0 p21 p22 . . . p2k

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 pm1 pm2 . . . pmk




,

where I is a m ×m identity matrix and P is the secret
parity generation matrix with size m × k. Note that A

is derived from a Vandermonde matrix, thus it has the
property that any m out of the m + k columns form an
invertible matrix.

By multiplying F by A, the user obtains the encoded
file:

G = F ·A = (G(1), G(2), . . . , G(m), G(m+1), . . . , G(n))

= (F1, F2, . . . , Fm, G(m+1), . . . , G(n)),

where G(j) = (g
(j)
1 , g

(j)
2 , . . . , g

(j)
l )T (j ∈ {1, . . . , n}).

As noticed, the multiplication reproduces the origi-
nal data file vectors of F and the remaining part
(G(m+1), . . . , G(n)) are k parity vectors generated based
on F.

3.2 Challenge Token Pre-computation

In order to achieve assurance of data storage correctness
and data error localization simultaneously, our scheme
entirely relies on the pre-computed verification tokens.
The main idea is as follows: before file distribution the
user pre-computes a certain number of short verification
tokens on individual vector G(j) (j ∈ {1, . . . , n}), each
token covering a random subset of data blocks. Later,
when the user wants to make sure the storage correct-
ness for the data in the cloud, he challenges the cloud
servers with a set of randomly generated block indices.
Upon receiving challenge, each cloud server computes a
short “signature” over the specified blocks and returns
them to the user. The values of these signatures should
match the corresponding tokens pre-computed by the
user. Meanwhile, as all servers operate over the same
subset of the indices, the requested response values for
integrity check must also be a valid codeword deter-
mined by secret matrix P.



5

Algorithm 1 Token Pre-computation

1: procedure
2: Choose parameters l, n and function f, φ;
3: Choose the number t of tokens;
4: Choose the number r of indices per verification;
5: Generate master key KPRP and challenge key

kchal;
6: for vector G(j), j ← 1, n do
7: for round i← 1, t do
8: Derive αi = fkchal

(i) and k
(i)
prp from KPRP .

9: Compute v
(j)
i =

∑r

q=1 αq
i ∗G(j)[φ

k
(i)
prp

(q)]

10: end for
11: end for
12: Store all the vi’s locally.
13: end procedure

Suppose the user wants to challenge the cloud servers
t times to ensure the correctness of data storage. Then, he
must pre-compute t verification tokens for each G(j) (j ∈
{1, . . . , n}), using a PRF f(·), a PRP φ(·), a challenge key
kchal and a master permutation key KPRP . Specifically,
to generate the ith token for server j, the user acts as
follows:

1) Derive a random challenge value αi of GF (2p) by

αi = fkchal
(i) and a permutation key k

(i)
prp based on

KPRP .
2) Compute the set of r randomly-chosen indices:

{Iq ∈ [1, ..., l]|1 ≤ q ≤ r}, where Iq = φ
k
(i)
prp

(q).

3) Calculate the token as:

v
(j)
i =

r∑

q=1

αq
i ∗G(j)[Iq], where G(j)[Iq ] = g

(j)
Iq

.

Note that v
(j)
i , which is an element of GF (2p) with small

size, is the response the user expects to receive from
server j when he challenges it on the specified data
blocks.

After token generation, the user has the choice of ei-
ther keeping the pre-computed tokens locally or storing
them in encrypted form on the cloud servers. In our case
here, the user stores them locally to obviate the need for
encryption and lower the bandwidth overhead during
dynamic data operation which will be discussed shortly.
The details of token generation are shown in Algorithm
1.

Once all tokens are computed, the final step before

file distribution is to blind each parity block g
(j)
i in

(G(m+1), . . . , G(n)) by

g
(j)
i ← g

(j)
i + fkj

(sij), i ∈ {1, . . . , l},

where kj is the secret key for parity vector G(j) (j ∈
{m + 1, . . . , n}). This is for protection of the secret ma-
trix P. We will discuss the necessity of using blinded
parities in detail in Section 5.2. After blinding the par-
ity information, the user disperses all the n encoded

vectors G(j) (j ∈ {1, . . . , n}) across the cloud servers
S1, S2, . . . , Sn.

3.3 Correctness Verification and Error Localization

Error localization is a key prerequisite for eliminating
errors in storage systems. It is also of critical importance
to identify potential threats from external attacks. How-
ever, many previous schemes [20], [21] do not explicitly
consider the problem of data error localization, thus only
providing binary results for the storage verification. Our
scheme outperforms those by integrating the correctness
verification and error localization (misbehaving server
identification) in our challenge-response protocol: the
response values from servers for each challenge not only
determine the correctness of the distributed storage, but
also contain information to locate potential data error(s).

Specifically, the procedure of the i-th challenge-
response for a cross-check over the n servers is described
as follows:

1) The user reveals the αi as well as the i-th permu-

tation key k
(i)
prp to each servers.

2) The server storing vector G(j) (j ∈ {1, . . . , n})

aggregates those r rows specified by index k
(i)
prp into

a linear combination

R
(j)
i =

r∑

q=1

αq
i ∗G(j)[φ

k
(i)
prp

(q)].

and send back R
(j)
i (j ∈ {1, . . . , n}).

3) Upon receiving R
(j)
i ’s from all the servers, the user

takes away blind values in R(j) (j ∈ {m+1, . . . , n})
by

R
(j)
i ← R

(j)
i −

r∑

q=1

fkj
(sIq,j) ·α

q
i , where Iq = φ

k
(i)
prp

(q).

4) Then the user verifies whether the received values
remain a valid codeword determined by secret
matrix P:

(R
(1)
i , . . . , R

(m)
i ) ·P

?
= (R

(m+1)
i , . . . , R

(n)
i ).

Because all the servers operate over the same subset of
indices, the linear aggregation of these r specified rows

(R
(1)
i , . . . , R

(n)
i ) has to be a codeword in the encoded

file matrix (See Section 5.1 for the correctness analysis).
If the above equation holds, the challenge is passed.
Otherwise, it indicates that among those specified rows,
there exist file block corruptions.

Once the inconsistency among the storage has been
successfully detected, we can rely on the pre-computed
verification tokens to further determine where the po-

tential data error(s) lies in. Note that each response R
(j)
i

is computed exactly in the same way as token v
(j)
i , thus

the user can simply find which server is misbehaving by
verifying the following n equations:

R
(j)
i

?
= v

(j)
i , j ∈ {1, . . . , n}.



6

Algorithm 2 Correctness Verification and Error Localiza-
tion

1: procedure CHALLENGE(i)

2: Recompute αi = fkchal
(i) and k

(i)
prp from KPRP ;

3: Send {αi, k
(i)
prp} to all the cloud servers;

4: Receive from servers:
{R

(j)
i =

∑r

q=1 αq
i ∗G(j)[φ

k
(i)
prp

(q)]|1 ≤ j ≤ n}

5: for (j ← m + 1, n) do
6: R(j) ← R(j)−

∑r

q=1 fkj
(sIq,j)·α

q
i , Iq = φ

k
(i)
prp

(q)

7: end for
8: if ((R

(1)
i , . . . , R

(m)
i )·P==(R

(m+1)
i , . . . , R

(n)
i )) then

9: Accept and ready for the next challenge.
10: else
11: for (j ← 1, n) do

12: if (R
(j)
i ! =v

(j)
i ) then

13: return server j is misbehaving.
14: end if
15: end for
16: end if
17: end procedure

Algorithm 2 gives the details of correctness verification
and error localization.
Discussion. Previous work [20], [21] has suggested using
the decoding capability of error-correction code to treat
data errors. But such approach imposes a bound on
the number of misbehaving servers b by b ≤ ⌊k/2⌋.
Namely, they cannot identify misbehaving servers when
b > ⌊k/2⌋1. However, our token based approach, while
allowing efficient storage correctness validation, does
not have this limitation on the number of misbehaving
servers. That is, our approach can identify any number
of misbehaving servers for b ≤ (m+k). Also note that, for
every challenge, each server only needs to send back an
aggregated value over the specified set of blocks. Thus
the bandwidth cost of our approach is much less than the
straightforward approaches that require downloading all
the challenged data.

3.4 File Retrieval and Error Recovery

Since our layout of file matrix is systematic, the user can
reconstruct the original file by downloading the data vec-
tors from the first m servers, assuming that they return
the correct response values. Notice that our verification
scheme is based on random spot-checking, so the storage
correctness assurance is a probabilistic one. However,
by choosing system parameters (e.g., r, l, t) appropriately
and conducting enough times of verification, we can
guarantee the successful file retrieval with high proba-
bility. On the other hand, whenever the data corruption
is detected, the comparison of pre-computed tokens and
received response values can guarantee the identification

1. In [20], the authors also suggest using brute-force decoding when
their dispersal code is an erasure code. However, such brute-force
method is asymptotically inefficient, and still cannot guarantee identi-
fication of all misbehaving servers.

Algorithm 3 Error Recovery

1: procedure
% Assume the block corruptions have been detected
among
% the specified r rows;
% Assume s ≤ k servers have been identified misbe-
having

2: Download r rows of blocks from servers;
3: Treat s servers as erasures and recover the blocks.
4: Resend the recovered blocks to corresponding

servers.
5: end procedure

of misbehaving server(s) (again with high probability),
which will be discussed shortly. Therefore, the user can
always ask servers to send back blocks of the r rows
specified in the challenge and regenerate the correct
blocks by erasure correction, shown in Algorithm 3, as
long as the number of identified misbehaving servers
is less than k. (otherwise, there is no way to recover
the corrupted blocks due to lack of redundancy, even
if we know the position of misbehaving servers.) The
newly recovered blocks can then be redistributed to
the misbehaving servers to maintain the correctness of
storage.

3.5 Towards Third Party Auditing

As discussed in our architecture, in case the user does
not have the time, feasibility or resources to perform
the storage correctness verification, he can optionally
delegate this task to an independent third party auditor,
making the cloud storage publicly verifiable. However,
as pointed out by the recent work [27], [28], to securely
introduce an effective TPA, the auditing process should
bring in no new vulnerabilities towards user data pri-
vacy. Namely, TPA should not learn user’s data content
through the delegated data auditing. Now we show that
with only slight modification, our protocol can support
privacy-preserving third party auditing.

The new design is based on the observation of linear
property of the parity vector blinding process. Recall that
the reason of blinding process is for protection of the
secret matrix P against cloud servers. However, this can
be achieved either by blinding the parity vector or by
blinding the data vector (we assume k < m). Thus, if
we blind data vector before file distribution encoding,
then the storage verification task can be successfully
delegated to third party auditing in a privacy-preserving
manner. Specifically, the new protocol is described as
follows:

1) Before file distribution, the user blinds each file

block data g
(j)
i in (G(1), . . . , G(m)) by g

(j)
i ← g

(j)
i +

fkj
(sij), i ∈ {1, . . . , l}, where kj is the secret key for

data vector G(j) (j ∈ {1, . . . , m}).
2) Based on the blinded data vector (G(1), . . . , G(m)),

the user generates k parity vectors



7

(G(m+1), . . . , G(n)) via the secret matrix P.
3) The user calculates the ith token for server

j as previous scheme: v
(j)
i =

∑r

q=1 αq
i ∗

G(j)[Iq], where G(j)[Iq ] = g
(j)
Iq

and αi = fkchal
(i) ∈

GF (2p).

4) The user sends the token set {v
(j)
i }{1≤i≤t,1≤j≤n},

secret matrix P, permutation and challenge key
KPRP and kchal to TPA for auditing delegation.

The correctness validation and misbehaving server
identification for TPA is just similar to the previous
scheme. The only difference is that TPA does not have
to take away the blinding values in the servers’ response
R(j) (j ∈ {1, . . . , n}) but verifies directly. As TPA does
not know the secret blinding key kj (j ∈ {1, . . . , m}),
there is no way for TPA to learn the data content infor-
mation during auditing process. Therefore, the privacy-
preserving third party auditing is achieved. Note that
compared to previous scheme, we only change the se-
quence of file encoding, token pre-computation, and
blinding. Thus, the overall computation overhead and
communication overhead remains roughly the same.

4 PROVIDING DYNAMIC DATA OPERATION
SUPPORT

So far, we assumed that F represents static or archived
data. This model may fit some application scenarios,
such as libraries and scientific datasets. However, in
cloud data storage, there are many potential scenarios
where data stored in the cloud is dynamic, like electronic
documents, photos, or log files etc. Therefore, it is crucial
to consider the dynamic case, where a user may wish to
perform various block-level operations of update, delete
and append to modify the data file while maintaining
the storage correctness assurance.

Since data do not reside at users’ local site but at
cloud service provider’s address domain, supporting
dynamic data operation can be quite challenging. On
the one hand, CSP needs to process the data dynamics
request without knowing the secret keying material. On
the other hand, users need to ensure that all the dynamic
data operation request has been faithfully processed by
CSP. To address this problem, we briefly explain our
approach methodology here and provide the details
later. For any data dynamic operation, the user must
first generate the corresponding resulted file blocks and
parities. This part of operation has to be carried out
by the user, since only he knows the secret matrix P.
Besides, to ensure the changes of data blocks correctly
reflected in the cloud address domain, the user also
needs to modify the corresponding storage verification
tokens to accommodate the changes on data blocks. Only
with the accordingly changed storage verification tokens,
the previously discussed challenge-response protocol
can be carried on successfully even after data dynamics.
In other words, these verification tokens help ensure
that CSP would correctly execute the processing of any
dynamic data operation request. Otherwise, CSP would

be caught cheating with high probability in the protocol
execution later on. Given this design methodology, the
straightforward and trivial way to support these oper-
ations is for user to download all the data from the
cloud servers and re-compute the whole parity blocks
as well as verification tokens. This would clearly be
highly inefficient. In this section, we will show how
our scheme can explicitly and efficiently handle dynamic
data operations for cloud data storage, by utilizing the
linear property of Reed-Solomon code and verification
token construction.

4.1 Update Operation

In cloud data storage, a user may need to modify some
data block(s) stored in the cloud, from its current value
fij to a new one, fij + ∆fij . We refer this operation
as data update. Figure 2 gives the high level logical
representation of data block update. Due to the linear
property of Reed-Solomon code, a user can perform
the update operation and generate the updated parity
blocks by using ∆fij only, without involving any other
unchanged blocks. Specifically, the user can construct a
general update matrix ∆F as

∆F =





∆f11 ∆f12 . . . ∆f1m

∆f21 ∆f22 . . . ∆f2m

...
...

. . .
...

∆fl1 ∆fl2 . . . ∆flm





= (∆F1, ∆F2, . . . , ∆Fm).

Note that we use zero elements in ∆F to denote the
unchanged blocks and thus ∆F should only be a sparse
matrix most of the time (we assume for certain time
epoch, the user only updates a relatively small part of
file F). To maintain the corresponding parity vectors as
well as be consistent with the original file layout, the
user can multiply ∆F by A and thus generate the update
information for both the data vectors and parity vectors
as follows:

∆F ·A = (∆G(1), . . . , ∆G(m), ∆G(m+1), . . . , ∆G(n))

= (∆F1, . . . , ∆Fm, ∆G(m+1), . . . , ∆G(n)),

where ∆G(j) (j ∈ {m + 1, . . . , n}) denotes the update
information for the parity vector G(j).

Because the data update operation inevitably affects
some or all of the remaining verification tokens, af-
ter preparation of update information, the user has
to amend those unused tokens for each vector G(j)

to maintain the same storage correctness assurance. In
other words, for all the unused tokens, the user needs
to exclude every occurrence of the old data block and
replace it with the new one. Thanks to the homomorphic
construction of our verification token, the user can per-
form the token update efficiently. To give more details,
suppose a block G(j)[Is], which is covered by the specific

token v
(j)
i , has been changed to G(j)[Is] + ∆G(j)[Is],

where Is = φ
k
(i)
prp

(s). To maintain the usability of token



8

0 0 0 f 6 1 f 6 2 f 6 3f 6 1 f 6 2 f 6 3 f 1 1f 2 1f 3 1f 4 1f 5 1 f 1 2f 2 2f 3 2f 4 2f 5 2 f 1 3f 2 3f 3 3f 4 3f 5 3f 1 1f 2 1 *f 3 1f 4 1f 5 1 f 1 2 *f 2 2f 3 2f 4 2f 5 2 * f 1 3f 2 3f 3 3f 4 3 *f 5 3O r i g i n a l f i l e b l o c k M o d i f i e d b l o c k
F 1 F 2 F 3 0j f 2 1000 j f 1 2000j f 5 2 000j f 4 30

j F 1 j F 2 j F 3F 1 * F 2 * F 3 *
A p p e n d e d b l o c k

Fig. 2: Logical representation of data dynamics, including block update, append and delete.

v
(j)
i , it is not hard to verify that the user can simply up-

date it by v
(j)
i ← v

(j)
i + αs

i ∗∆G(j)[Is], without retrieving

other r−1 blocks required in the pre-computation of v
(j)
i .

After the amendment to the affected tokens2, the user
needs to blind the update information ∆g

(j)
i for each

parity block in (∆G(m+1), . . . , ∆G(n)) to hide the secret

matrix P by ∆g
(j)
i ← ∆g

(j)
i +fkj

(sver
ij ), i ∈ {1, . . . , l}. Here

we use a new seed sver
ij for the PRF. The version number

ver functions like a counter which helps the user to
keep track of the blind information on the specific parity
blocks. After blinding, the user sends update information
to the cloud servers, which perform the update operation
as G(j) ← G(j) + ∆G(j), (j ∈ {1, . . . , n}).

Discussion. Note that by using the new seed sver
ij for

the PRF functions every time (for a block update op-
eration), we can ensure the freshness of the random
value embedded into parity blocks. In other words, the
cloud servers cannot simply abstract away the random
blinding information on parity blocks by subtracting the
old and newly updated parity blocks. As a result, the
secret matrix P is still being well protected, and the
guarantee of storage correctness remains.

4.2 Delete Operation

Sometimes, after being stored in the cloud, certain data
blocks may need to be deleted. The delete operation we
are considering is a general one, in which user replaces
the data block with zero or some special reserved data
symbol. From this point of view, the delete operation
is actually a special case of the data update operation,
where the original data blocks can be replaced with
zeros or some predetermined special blocks. Therefore,
we can rely on the update procedure to support delete
operation, i.e., by setting ∆fij in ∆F to be −∆fij . Also,
all the affected tokens have to be modified and the
updated parity information has to be blinded using the
same method specified in update operation.

2. In practice, it is possible that only a fraction of tokens need
amendment, since the updated blocks may not be covered by all the
tokens.

4.3 Append Operation

In some cases, the user may want to increase the size
of his stored data by adding blocks at the end of the
data file, which we refer as data append. We anticipate
that the most frequent append operation in cloud data
storage is bulk append, in which the user needs to
upload a large number of blocks (not a single block) at
one time.

Given the file matrix F illustrated in file distribution
preparation, appending blocks towards the end of a data
file is equivalent to concatenate corresponding rows at
the bottom of the matrix layout for file F (See Figure
2). In the beginning, there are only l rows in the file
matrix. To simplify the presentation, we suppose the user
wants to append m blocks at the end of file F, denoted
as (fl+1,1, fl+1,2, ..., fl+1,m) (We can always use zero-
padding to make a row of m elements.). With the secret
matrix P, the user can directly calculate the append
blocks for each parity server as (fl+1,1, ..., fl+1,m) · P =

(g
(m+1)
l+1 , ..., g

(n)
l+1).

To ensure the newly appended blocks are covered by
our challenge tokens, we need a slight modification to
our token pre-computation. Specifically, we require the
user to expect the maximum size in blocks, denoted as
lmax, for each of his data vector. This idea of supporting
block append was first suggested by [13] in a single
server setting, and it relies on both the initial budget
for the maximum anticipated data size lmax in each
encoded data vector and the system parameter rmax =
⌈r ∗ (lmax/l)⌉ for each pre-computed challenge-response
token. The pre-computation of the i-th token on server
j is modified as follows: vi =

∑rmax

q=1 αq
i ∗G(j)[Iq], where

G(j)[Iq] =

{
G(j)[φ

k
(i)
prp

(q)] , [φ
k
(i)
prp

(q)] ≤ l

0 , [φ
k
(i)
prp

(q)] > l
,

and the PRP φ(·) is modified as: φ(·) : {0, 1}log2(lmax) ×
key → {0, 1}log2(lmax). This formula guarantees that on
average, there will be r indices falling into the range of
existing l blocks. Because the cloud servers and the user
have the agreement on the number of existing blocks in
each vector G(j), servers will follow exactly the above
procedure when re-computing the token values upon
receiving user’s challenge request.



9

Now when the user is ready to append new blocks,
i.e., both the file blocks and the corresponding parity
blocks are generated, the total length of each vector
G(j) will be increased and fall into the range [l, lmax].
Therefore, the user will update those affected tokens by
adding αs

i ∗G(j)[Is] to the old vi whenever G(j)[Is] 6= 0
for Is > l, where Is = φ

k
(i)
prp

(s). The parity blinding is

similar as introduced in update operation, and thus is
omitted here.

4.4 Insert Operation

An insert operation to the data file refers to an append
operation at the desired index position while maintain-
ing the same data block structure for the whole data
file, i.e., inserting a block F [j] corresponds to shifting
all blocks starting with index j + 1 by one slot. Thus,
an insert operation may affect many rows in the logical
data file matrix F, and a substantial number of computa-
tions are required to renumber all the subsequent blocks
as well as re-compute the challenge-response tokens.
Hence, a direct insert operation is difficult to support.

In order to fully support block insertion operation,
recent work [14], [15] suggests utilizing additional data
structure (for example, Merkle Hash Tree [29]) to main-
tain and enforce the block index information. Following
this line of research, we can circumvent the dilemma
of our block insertion by viewing each insertion as a
logical append operation at the end of file F. Specifically,
if we also use additional data structure to maintain such
logical to physical block index mapping information,
then all block insertion can be treated via logical append
operation, which can be efficiently supported. On the
other hand, using the block index mapping information,
the user can still access or retrieve the file as it is. Note
that as a tradeoff, the extra data structure information
has to be maintained locally on the user side.

5 SECURITY ANALYSIS AND PERFORMANCE
EVALUATION

In this section, we analyze our proposed scheme in
terms of correctness, security and efficiency. Our security
analysis focuses on the adversary model defined in
Section II. We also evaluate the efficiency of our scheme
via implementation of both file distribution preparation
and verification token pre-computation.

5.1 Correctness Analysis

First, we analyze the correctness of the verification

procedure. Upon obtaining all the response R
(j)
i s from

servers and taking away the random blind values from

R
(j)
i (j ∈ {m + 1, . . . , n}), the user relies on the equation

(R
(1)
i , . . . , R

(m)
i ) · P

?
= (R

(m+1)
i , . . . , R

(n)
i ) to ensure the

storage correctness. To see why this is true, we can
rewrite the equation according to the token computation:

(
∑r

q=1 αq
i ∗ g

(1)
Iq

, ...,
∑r

q=1 αq
i ∗ g

(m)
Iq

) · P = (
∑r

q=1 αq
i ∗

g
(m+1)
Iq

, ...,
∑r

q=1 αq
i ∗ g

(n)
Iq

), and hence the left hand side
(LHS) of the equation expands as:

LHS = (αi, α
2
i , . . . , α

r
i )





g
(1)
I1

g
(2)
I1

. . . g
(m)
I1

g
(1)
I2

g
(2)
I2

. . . g
(m)
I2

...
...

. . .
...

g
(1)
Ir

g
(2)
Ir

. . . g
(m)
Ir




·P

= (αi, α
2
i , . . . , α

r
i )





g
(m+1)
I1

g
(m+2)
I1

. . . g
(n)
I1

g
(m+1)
I2

g
(m+2)
I2

. . . g
(n)
I2

...
...

. . .
...

g
(m+1)
Ir

g
(m+2)
Ir

. . . g
(n)
Ir




,

which equals the right hand side as required. Thus, it
is clear to show that as long as each server operates on
the same specified subset of rows, the above checking
equation will always hold.

5.2 Security Strength

5.2.1 Detection Probability against Data Modification

In our scheme, servers are required to operate only
on specified rows in each challenge-response protocol
execution. We will show that this “sampling” strategy
on selected rows instead of all can greatly reduce the
computational overhead on the server, while maintain-
ing high detection probability for data corruption.

Suppose nc servers are misbehaving due to the pos-
sible compromise or Byzantine failure. In the following
analysis, we do not limit the value of nc, i.e., nc ≤ n.
Thus, all the analysis results hold even if all the servers
are compromised. We will leave the explanation on
collusion resistance of our scheme against this worst
case scenario in a later subsection. Assume the adversary
modifies the data blocks in z rows out of the l rows in
the encoded file matrix. Let r be the number of different
rows for which the user asks for checking in a challenge.
Let X be a discrete random variable that is defined to
be the number of rows chosen by the user that matches
the rows modified by the adversary. We first analyze
the matching probability that at least one of the rows
picked by the user matches one of the rows modified
by the adversary: P r

m = 1 − P{X = 0} = 1 −
∏r−1

i=0 (1 −
min{ z

l−i
, 1}) ≥ 1− ( l−z

l
)r. If none of the specified r rows

in the i-th verification process are deleted or modified,
the adversary avoids the detection.

Next, we study the probability of a false negative
result that there exists at least one invalid response calcu-
lated from those specified r rows, but the checking equa-

tion still holds. Consider the responses R
(1)
i , . . . , R

(n)
i

returned from the data storage servers for the i-th

challenge, each response value R
(j)
i , calculated within

GF (2p), is based on r blocks on server j. The num-
ber of responses R(m+1), . . . , R(n) from parity servers
is k = n − m. Thus, according to the proposition 2 of
our previous work in [30], the false negative probability



10

0.1
0.1

0.1

0.1
0.1 0.10.1

0.2

0.2

0.2

0.2
0.2

0.3

0.3

0.3

0.3
0.3

0.4

0.4

0.4

0.4

0.4

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.95

0.95

0.95

0.99

r (number of queried rows) (as a percentage of l)

l (
to

ta
l n

um
be

r 
of

 r
ow

s)

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(a) z = 1% of l.

0.
1

0.
1

0.1

0.1
0.1 0.1

0.
2

0.2

0.2

0.2
0.2 0.2

0.
3

0.3

0.3

0.3

0.3
0.3

0.
4

0.4

0.4

0.4

0.4
0.4

0.5

0.5

0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.7

0.7

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.9

0.9

0.9

0.95

0.95

0.95

0.95

0.99

0.99

0.99

r (number of queried rows) (as a percentage of l)

l (
to

ta
l n

um
be

r 
of

 r
ow

s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(b) z = 10% of l.

Fig. 3: The detection probability Pd against data modification. We show Pd as a function of l (the number of blocks
on each cloud storage server) and r (the number of rows queried by the user, shown as a percentage of l) for two
values of z (the number of rows modified by the adversary). Both graphs are plotted under p = 16, nc = 10 and
k = 5, but with different scale.

is P r
f = Pr1 + Pr2, where Pr1 = (1+2−p)nc−1

2nc−1 and

Pr2 = (1− Pr1)(2
−p)k.

Based on above discussion, it follows that the prob-
ability of data modification detection across all storage
servers is Pd = P r

m·(1−P r
f ). Figure 3 plots Pd for different

values of l, r, z while we set p = 16, nc = 10 and k = 5 3.
From the figure we can see that if more than a fraction
of the data file is corrupted, then it suffices to challenge
for a small constant number of rows in order to achieve
detection with high probability. For example, if z = 1%
of l, every token only needs to cover 460 indices in order
to achieve the detection probability of at least 99%.

5.2.2 Identification Probability for Misbehaving Servers
We have shown that, if the adversary modifies the
data blocks among any of the data storage servers,
our sampling checking scheme can successfully detect
the attack with high probability. As long as the data
modification is caught, the user will further determine
which server is malfunctioning. This can be achieved by

comparing the response values R
(j)
i with the pre-stored

tokens v
(j)
i , where j ∈ {1, . . . , n}. The probability for

error localization or identifying misbehaving server(s)
can be computed in a similar way. It is the product
of the matching probability for sampling check and
the probability of complementary event for the false
negative result. Obviously, the matching probability is

P̂ r
m = 1−

∏r−1
i=0 (1−min{ ẑ

l−i
, 1}), where ẑ ≤ z.

Next, we consider the false negative probability that

R
(j)
i = v

(j)
i when at least one of ẑ blocks is modified.

According to proposition 1 of [30], tokens calculated

3. Note that nc and k only affect the false negative probability
P r

f
. However in our scheme, since p = 16 almost dominates the

negligibility of P r
f

, the value of nc and k have little effect in the plot
of Pd.

in GF (2p) for two different data vectors collide with
probability P̂ r

f = 2−p. Thus, the identification probability

for misbehaving server(s) is P̂d = P̂ r
m · (1 − P̂ r

f ). Along
with the analysis in detection probability, if z = 1% of
l and each token covers 460 indices, the identification
probability for misbehaving servers is at least 99%. Note
that if the number of detected misbehaving servers is less
than the parity vectors, we can use erasure-correcting
code to recover the corrupted data, achieving storage
dependability as shown at Section 3.4 and Algorithm 3.

5.2.3 Security Strength Against Worst Case Scenario

We now explain why it is a must to blind the parity
blocks and how our proposed schemes achieve collusion
resistance against the worst case scenario in the adver-
sary model.

Recall that in the file distribution preparation, the
redundancy parity vectors are calculated via multiplying
the file matrix F by P, where P is the secret parity
generation matrix we later rely on for storage correctness
assurance. If we disperse all the generated vectors di-
rectly after token pre-computation, i.e., without blinding,
malicious servers that collaborate can reconstruct the se-
cret P matrix easily: they can pick blocks from the same
rows among the data and parity vectors to establish a
set of m · k linear equations and solve for the m · k
entries of the parity generation matrix P. Once they have
the knowledge of P, those malicious servers can conse-
quently modify any part of the data blocks and calculate
the corresponding parity blocks, and vice versa, making
their codeword relationship always consistent. There-
fore, our storage correctness challenge scheme would be
undermined—even if those modified blocks are covered
by the specified rows, the storage correctness check
equation would always hold.



11

05 01 0 01 5 02 0 02 5 03 0 03 5 04 0 0
1 0 , 1 0 1 0 , 8 1 0 , 6 1 0 , 4 1 0 , 2

P a r i t y b l i n d i n g c o s tP a r i t y g e n e r a � o n c o s tT ot al costi n� me( second)
(a) m is fixed, and k is decreasing.

05 01 0 01 5 02 0 02 5 03 0 03 5 04 0 0
1 8 , 4 1 6 , 6 1 4 , 8 1 2 , 1 0 1 0 , 1 2

P a r i t y b l i n d i n g c o s tP a r i t y g e n e r a  o n c o s tT ot al costi n· me( second)
(b) m + k is fixed.

Fig. 4: Performance comparison between two different parameter settings for 1 GB file distribution preparation.
The (m, k) denotes the chosen parameters for the underlying Reed-Solomon coding. For example, (10,2) means we
divide file into 10 data vectors and then generate 2 redundant parity vectors.

To prevent colluding servers from recovering P and
making up consistently-related data and parity blocks,
we utilize the technique of adding random perturbations
to the encoded file matrix and hence hide the secret
matrix P. We make use of a keyed pseudorandom func-
tion fkj

(·) with key kj and seed sver
ij , both of which

has been introduced previously. In order to maintain the
systematic layout of data file, we only blind the parity
blocks with random perturbations (We can also only
blind data blocks and achieve privacy-preserving third
party auditing, as shown in Section 3.5). Our purpose is
to add “noise” to the set of linear equations and make it
computationally infeasible to solve for the correct secret
matrix P. By blinding each parity block with random
perturbation, the malicious servers no longer have all
the necessary information to build up the correct linear
equation groups and therefore cannot derive the secret
matrix P.

5.3 Performance Evaluation

We now assess the performance of the proposed storage
auditing scheme. We focus on the cost of file distribu-
tion preparation as well as the token generation. Our
experiment is conducted on a system with an Intel Core
2 processor running at 1.86 GHz, 2048 MB of RAM, and
a 7200 RPM Western Digital 250 GB Serial ATA drive.
Algorithms are implemented using open-source erasure
coding library Jerasure [31] written in C. All results
represent the mean of 20 trials.

5.3.1 File Distribution Preparation
As discussed, file distribution preparation includes the
generation of parity vectors (the encoding part) as well
as the corresponding parity blinding part. We consider
two sets of different parameters for the (m, k) Reed-
Solomon encoding, both of which work over GF (216).
Figure 4 shows the total cost for preparing a 1 GB file
before outsourcing. In the figure on the left, we set
the number of data vectors m constant at 10, while
decreasing the number of parity vectors k from 10 to
2. In the one on the right, we keep the total number of

data and parity vectors m + k fixed at 22, and change
the number of data vectors m from 18 to 10. From the
figure, we can see the number k is the dominant factor
for the cost of both parity generation and parity blinding.
This can be explained as follows: on the one hand,
k determines how many parity vectors are required
before data outsourcing, and the parity generation cost
increases almost linearly with the growth of k; on the
other hand, the growth of k means the larger number
of parity blocks required to be blinded, which directly
leads to more calls to our non-optimized PRF generation
in C. By using more practical PRF constructions, such as
HMAC [32], the parity blinding cost is expected to be
further improved.

Compared to the existing work [20], it can be shown
from Figure 4 that the file distribution preparation of
our scheme is more efficient. This is because in [20] an
additional layer of error-correcting code has to be con-
ducted on all the data and parity vectors right after the
file distribution encoding. For the same reason, the two-
layer coding structure makes the solution in [20] more
suitable for static data only, as any change to the contents
of file F must propagate through the two-layer error-
correcting code, which entails both high communication
and computation complexity. But in our scheme, the file
update only affects the specific “rows” of the encoded
file matrix, striking a good balance between both error
resilience and data dynamics.

5.3.2 Challenge Token Computation

Although in our scheme the number of verification token
t is a fixed priori determined before file distribution,
we can overcome this issue by choosing sufficient large
t in practice. For example, when t is selected to be
7300 and 14600, the data file can be verified every day
for the next 20 years and 40 years, respectively, which
should be of enough use in practice. Note that instead
of directly computing each token, our implementation
uses the Horner algorithm suggested in [21] to calculate

token v
(j)
i from the back, and achieves a slightly faster



12

Verify daily for next 20 years (m, k) = (10, 4) (m, k) = (10, 6) (m, k) = (10, 8) (m, k) = (14, 8)

Storage overhead (KB) 199.61 228.13 256.64 313.67

Computation overhead (Second) 41.40 47.31 53.22 65.05

Verify daily for next 40 years (m, k) = (10, 4) (m, k) = (10, 6) (m, k) = (10, 8) (m, k) = (14, 8)

Storage overhead (KB) 399.22 456.25 513.28 627.34

Computation overhead (Second) 82.79 94.62 106.45 130.10

TABLE 1: The storage and computation cost of token pre-computation for 1GB data file under different system
settings. The (m, k) denotes the parameters for the underlying Reed-Solomon coding, as illustrated in Fig. 4.

performance. Specifically,

v
(j)
i =

r∑

q=1

αr+1−q
i ∗G(j)[Iq] = (((G(j)[I1] ∗ αi +

G(j)[I2]) ∗ αi + G(j)[I3] . . .) ∗ αi + G(j)[Ir]) ∗ αi,

which only requires r multiplication and (r − 1) XOR
operations. With Jerasure library [31], the multiplication
over GF (216) in our experiment is based on discrete
logarithms.

Following the security analysis, we select a practical
parameter r = 460 for our token pre-computation (see
Section 5.2.1), i.e., each token covers 460 different indices.
Other parameters are along with the file distribution
preparation. Our implementation shows that the average
token pre-computation cost is about 0.4 ms. This is sig-
nificantly faster than the hash function based token pre-
computation scheme proposed in [13]. To verify encoded
data distributed over a typical number of 14 servers, the
total cost for token pre-computation is no more than
1 and 1.5 minutes, for the next 20 years and 40 years,
respectively. Note that each token is only an element of
field GF (216), the extra storage for those pre-computed
tokens is less than 1MB, and thus can be neglected. Table
1 gives a summary of storage and computation cost of
token pre-computation for 1GB data file under different
system settings.

6 RELATED WORK

Juels et al. [9] described a formal “proof of retriev-
ability” (POR) model for ensuring the remote data in-
tegrity. Their scheme combines spot-checking and error-
correcting code to ensure both possession and retriev-
ability of files on archive service systems. Shacham et
al. [16] built on this model and constructed a random
linear function based homomorphic authenticator which
enables unlimited number of challenges and requires
less communication overhead due to its usage of rel-
atively small size of BLS signature. Bowers et al. [17]
proposed an improved framework for POR protocols
that generalizes both Juels and Shacham’s work. Later
in their subsequent work, Bowers et al. [20] extended
POR model to distributed systems. However, all these
schemes are focusing on static data. The effectiveness
of their schemes rests primarily on the preprocessing
steps that the user conducts before outsourcing the data
file F. Any change to the contents of F, even few
bits, must propagate through the error-correcting code

and the corresponding random shuffling process, thus
introducing significant computation and communication
complexity. Recently, Dodis et al. [19] gave theoretical
studies on generalized framework for different variants
of existing POR work.

Ateniese et al. [10] defined the “provable data pos-
session” (PDP) model for ensuring possession of file
on untrusted storages. Their scheme utilized public key
based homomorphic tags for auditing the data file. How-
ever, the pre-computation of the tags imposes heavy
computation overhead that can be expensive for an
entire file. In their subsequent work, Ateniese et al. [13]
described a PDP scheme that uses only symmetric key
based cryptography. This method has lower-overhead
than their previous scheme and allows for block updates,
deletions and appends to the stored file, which has also
been supported in our work. However, their scheme
focuses on single server scenario and does not provide
data availability guarantee against server failures, leav-
ing both the distributed scenario and data error recovery
issue unexplored. The explicit support of data dynamics
has further been studied in the two recent work [14]
and [15]. Wang et al. [14] proposed to combine BLS
based homomorphic authenticator with Merkle Hash
Tree to support fully data dynamics, while Erway et
al. [15] developed a skip list based scheme to enable
provable data possession with fully dynamics support.
The incremental cryptography work done by Bellare et
al. [33] also provides a set of cryptographic building
blocks such as hash, MAC, and signature functions that
may be employed for storage integrity verification while
supporting dynamic operations on data. However, this
branch of work falls into the traditional data integrity
protection mechanism, where local copy of data has to
be maintained for the verification. It is not yet clear how
the work can be adapted to cloud storage scenario where
users no longer have the data at local sites but still need
to ensure the storage correctness efficiently in the cloud.

In other related work, Curtmola et al. [18] aimed to en-
sure data possession of multiple replicas across the dis-
tributed storage system. They extended the PDP scheme
to cover multiple replicas without encoding each replica
separately, providing guarantee that multiple copies of
data are actually maintained. Lillibridge et al. [22] pre-
sented a P2P backup scheme in which blocks of a data
file are dispersed across m + k peers using an (m, k)-
erasure code. Peers can request random blocks from their
backup peers and verify the integrity using separate



13

keyed cryptographic hashes attached on each block.
Their scheme can detect data loss from free-riding peers,
but does not ensure all data is unchanged. Filho et al. [34]
proposed to verify data integrity using RSA-based hash
to demonstrate uncheatable data possession in peer-
to-peer file sharing networks. However, their proposal
requires exponentiation over the entire data file, which
is clearly impractical for the server whenever the file is
large. Shah et al. [11], [12] proposed allowing a TPA to
keep online storage honest by first encrypting the data
then sending a number of pre-computed symmetric-
keyed hashes over the encrypted data to the auditor.
However, their scheme only works for encrypted files,
and auditors must maintain long-term state. Schwarz et
al. [21] proposed to ensure static file integrity across mul-
tiple distributed servers, using erasure-coding and block-
level file integrity checks. We adopted some ideas of
their distributed storage verification protocol. However,
our scheme further support data dynamics and explicitly
study the problem of misbehaving server identification,
while theirs did not. Very recently, Wang et al. [28]
gave a study on many existing solutions on remote data
integrity checking, and discussed their pros and cons
under different design scenarios of secure cloud storage
services.

Portions of the work presented in this paper have
previously appeared as an extended abstract in [1]. We
have revised the article a lot and add more technical
details as compared to [1]. The primary improvements
are as follows: Firstly, we provide the protocol extension
for privacy-preserving third-party auditing, and discuss
the application scenarios for cloud storage service. Sec-
ondly, we add correctness analysis of proposed stor-
age verification design. Thirdly, we completely redo all
the experiments in our performance evaluation part,
which achieves significantly improved result as com-
pared to [1]. We also add detailed discussion on the
strength of our bounded usage for protocol verifications
and its comparison with state-of-the-art.

7 CONCLUSION

In this paper, we investigate the problem of data security
in cloud data storage, which is essentially a distributed
storage system. To achieve the assurances of cloud data
integrity and availability and enforce the quality of
dependable cloud storage service for users, we propose
an effective and flexible distributed scheme with explicit
dynamic data support, including block update, delete,
and append. We rely on erasure-correcting code in the
file distribution preparation to provide redundancy par-
ity vectors and guarantee the data dependability. By
utilizing the homomorphic token with distributed verifi-
cation of erasure-coded data, our scheme achieves the in-
tegration of storage correctness insurance and data error
localization, i.e., whenever data corruption has been de-
tected during the storage correctness verification across
the distributed servers, we can almost guarantee the

simultaneous identification of the misbehaving server(s).
Considering the time, computation resources, and even
the related online burden of users, we also provide
the extension of the proposed main scheme to support
third-party auditing, where users can safely delegate the
integrity checking tasks to third-party auditors and be
worry-free to use the cloud storage services. Through
detailed security and extensive experiment results, we
show that our scheme is highly efficient and resilient
to Byzantine failure, malicious data modification attack,
and even server colluding attacks.

ACKNOWLEDGMENTS

This work was supported in part by the US National
Science Foundation under grant CNS-0831963, CNS-
0626601, CNS-0716306, and CNS-0831628.

REFERENCES

[1] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage
security in cloud computing,” in Proc. of IWQoS’09, July 2009, pp.
1–9.

[2] Amazon.com, “Amazon web services (aws),” Online at http://
aws.amazon.com/, 2009.

[3] Sun Microsystems, Inc., “Building customer trust in cloud com-
puting with transparent security,” Online at https://www.sun.
com/offers/details/sun transparency.xml, November 2009.

[4] M. Arrington, “Gmail disaster: Reports of mass email
deletions,” Online at http://www.techcrunch.com/2006/12/
28/gmail-disasterreports-of-mass-email-deletions/, December
2006.

[5] J. Kincaid, “MediaMax/TheLinkup Closes Its Doors,”
Online at http://www.techcrunch.com/2008/07/10/
mediamaxthelinkup-closes-its-doors/, July 2008.

[6] Amazon.com, “Amazon s3 availability event: July 20, 2008,”
Online at http://status.aws.amazon.com/s3-20080720.html, July
2008.

[7] S. Wilson, “Appengine outage,” Online at http://www.
cio-weblog.com/50226711/appengine outage.php, June 2008.

[8] B. Krebs, “Payment Processor Breach May Be Largest Ever,” On-
line at http://voices.washingtonpost.com/securityfix/2009/01/
payment processor breach may b.html, Jan. 2009.

[9] A. Juels and J. Burton S. Kaliski, “Pors: Proofs of retrievability for
large files,” in Proc. of CCS’07, Alexandria, VA, October 2007, pp.
584–597.

[10] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
in Proc. of CCS’07, Alexandria, VA, October 2007, pp. 598–609.

[11] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, “Audit-
ing to keep online storage services honest,” in Proc. of HotOS’07.
Berkeley, CA, USA: USENIX Association, 2007, pp. 1–6.

[12] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving
audit and extraction of digital contents,” Cryptology ePrint
Archive, Report 2008/186, 2008, http://eprint.iacr.org/.

[13] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proc. of SecureComm’08,
2008, pp. 1–10.

[14] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloud com-
puting,” in Proc. of ESORICS’09, volume 5789 of LNCS. Springer-
Verlag, Sep. 2009, pp. 355–370.

[15] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. of CCS’09, 2009, pp. 213–222.

[16] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proc. of Asiacrypt’08, volume 5350 of LNCS, 2008, pp. 90–107.

[17] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability:
Theory and implementation,” in Proc. of ACM workshop on Cloud
Computing security (CCSW’09), 2009, pp. 43–54.

[18] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp:
Multiple-replica provable data possession,” in Proc. of ICDCS’08.
IEEE Computer Society, 2008, pp. 411–420.



14

[19] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via
hardness amplification,” in Proc. of the 6th Theory of Cryptography
Conference (TCC’09), San Francisco, CA, USA, March 2009.

[20] K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability
and integrity layer for cloud storage,” in Proc. of CCS’09, 2009,
pp. 187–198.

[21] T. Schwarz and E. L. Miller, “Store, forget, and check: Using
algebraic signatures to check remotely administered storage,” in
Proc. of ICDCS’06, 2006, pp. 12–12.

[22] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard, “A
cooperative internet backup scheme,” in Proc. of the 2003 USENIX
Annual Technical Conference (General Track), 2003, pp. 29–41.

[23] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transaction on Computer Systems, vol. 20,
no. 4, pp. 398–461, 2002.

[24] L. Carter and M. Wegman, “Universal hash functions,” Journal of
Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.

[25] J. Hendricks, G. Ganger, and M. Reiter, “Verifying distributed
erasure-coded data,” in Proc. of 26th ACM Symposium on Principles
of Distributed Computing, 2007, pp. 139–146.

[26] J. S. Plank and Y. Ding, “Note: Correction to the 1997 tutorial on
reed-solomon coding,” University of Tennessee, Tech. Rep. CS-03-
504, April 2003.

[27] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving
public auditing for storage security in cloud computing,” in Proc.
of IEEE INFOCOM’10, San Diego, CA, USA, March 2010.

[28] C. Wang, K. Ren, W. Lou, and J. Li, “Towards publicly auditable
secure cloud data storage services,” IEEE Network Magazine,
vol. 24, no. 4, pp. 19–24, 2010.

[29] R. C. Merkle, “Protocols for public key cryptosystems,” in Proc. of
IEEE Symposium on Security and Privacy, Los Alamitos, CA, USA,
1980.

[30] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and secure
sensor data storage with dynamic integrity assurance,” in Proc. of
IEEE INFOCOM’09, Rio de Janeiro, Brazil, Appril 2009.

[31] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A
library in C/C++ facilitating erasure coding for storage applica-
tions - Version 1.2,” University of Tennessee, Tech. Rep. CS-08-627,
August 2008.

[32] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions
for message authentication,” in Proc. of Crypto’96, volume 1109 of
LNCS. Springer-Verlag, 1996, pp. 1–15.

[33] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental
cryptography: The case of hashing and signing,” in Proc. of
CRYPTO’94, volume 839 of LNCS. Springer-Verlag, 1994, pp. 216–
233.

[34] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating data
possession and uncheatable data transfer,” Cryptology ePrint
Archive, Report 2006/150, 2006, http://eprint.iacr.org/.

Cong Wang received his B.E and M.E degrees
from Wuhan University, China, in 2004 and
2007, respectively. He is currently a Ph.D stu-
dent in the Electrical and Computer Engineering
Department at Illinois Institute of Technology. His
research interests are in the areas of applied
cryptography and network security, with current
focus on secure data services in Cloud Comput-
ing, and secure computation outsourcing.

Qian Wang received the B.S. degree from
Wuhan University, China, in 2003 and the M.S.
degree from Shanghai Institute of Microsystem
and Information Technology, Chinese Academy
of Sciences, China, in 2006, both in Electrical
Engineering. He is currently working towards the
Ph.D. degree in the Electrical and Computer
Engineering Department at Illinois Institute of
Technology. His research interests include wire-
less network security and privacy, and Cloud
Computing security.

Kui Ren is an assistant professor in the Elec-
trical and Computer Engineering Department
at Illinois Institute of Technology. He obtained
his PhD degree in Electrical and Computer En-
gineering from Worcester Polytechnic Institute
in 2007. He received his B. Eng and M. Eng
both from Zhejiang University in 1998 and 2001,
respectively. In the past, he has worked as a
research assistant at Shanghai Institute of Mi-
crosystem and Information Technology, Chinese
Academy of Sciences, at Institute for Infocomm

Research, Singapore, and at Information and Communications Uni-
versity, South Korea. His research interests include network security
& privacy and applied cryptography with current focus on security &
privacy in cloud computing, lower-layer attack & defense mechanisms
for wireless networks, and smart grid security and energy efficiency.
His research is sponsored by US National Science Foundation and
Department of Energy. He is a member of IEEE and ACM.

Ning Cao received his B.E. and M.E. degrees
from Xi’an Jiaotong University, China, in 2002
and 2008, respectively. He is currently a PhD
student in the Electrical and Computer Engi-
neering Department at Worcester Polytechnic
Institute. His research interests are in the areas
of storage codes, security and privacy in Cloud
Computing, and secure mobile cloud.

Wenjing Lou earned a BE and an ME in Com-
puter Science and Engineering at Xi’an Jiao-
tong University in China, an MASc in Computer
Communications at the Nanyang Technological
University in Singapore, and a PhD in Electrical
and Computer Engineering at the University of
Florida. From December 1997 to July 1999, she
worked as a Research Engineer at Network
Technology Research Center, Nanyang Techno-
logical University. She joined the Electrical and
Computer Engineering department at Worcester

Polytechnic Institute as an assistant professor in 2003, where she is now
an associate professor. Her current research interests are in the areas of
ad hoc, sensor, and mesh networks, with emphases on network security
and routing issues. She has been an editor for IEEE Transactions on
Wireless Communications since 2007. She was named Joseph Samuel
Satin Distinguished fellow in 2006 by WPI. She is a recipient of the
U.S. National Science Foundation Faculty Early Career Development
(CAREER) award in 2008.


