
1

Secure Optimization Computation Outsourcing
in Cloud Computing: A Case Study of Linear

Programming
Cong Wang, Student Member, IEEE, Kui Ren, Member, IEEE, and Jia Wang, Member, IEEE

Abstract—Cloud computing enables an economically promising paradigm of computation outsourcing. However, how to protect
customers confidential data processed and generated during the computation is becoming the major security concern. Focusing on
engineering computing and optimization tasks, this paper investigates secure outsourcing of widely applicable linear programming (LP)
computations. Our mechanism design explicitly decomposes LP computation outsourcing into public LP solvers running on the cloud
and private LP parameters owned by the customer. The resulting flexibility allows us to explore appropriate security/efficiency tradeoff
via higher-level abstraction of LP computation than the general circuit representation. Specifically, by formulating private LP problem
as a set of matrices/vectors, we develop efficient privacy-preserving problem transformation techniques, which allow customers to
transform the original LP into some random one while protecting sensitive input/output information. To validate the computation result,
we further explore the fundamental duality theorem of LP and derive the necessary and sufficient conditions that correct results must
satisfy. Such result verification mechanism is very efficient and incurs close-to-zero additional cost on both cloud server and customers.
Extensive security analysis and experiment results show the immediate practicability of our mechanism design.

Index Terms—Confidential data, computation outsourcing, optimization, cloud computing.

F

1 INTRODUCTION

C LOUD Computing provides convenient on-demand
network access to a shared pool of configurable

computing resources that can be rapidly deployed with
great efficiency and minimal management overhead [2].
One fundamental advantage of the cloud paradigm
is computation outsourcing, where the computational
power of cloud customers is no longer limited by their
resource-constraint devices. By outsourcing the work-
loads into the cloud, customers could enjoy the literally
unlimited computing resources in a pay-per-use manner
without committing any large capital outlays in the
purchase of both hardware and software and/or the
operational overhead therein.

Despite the tremendous benefits, outsourcing compu-
tation to the commercial public cloud is also depriving
customers’ direct control over the systems that process
and generate their data during the computation, which
inevitably brings in new security concerns and chal-
lenges towards this promising computing model [3].
On the one hand, the outsourced computation work-
loads often contain sensitive information, such as the
business financial records, proprietary research data, or
personally identifiable health information etc. To combat
against unauthorized information leakage, sensitive data

• Cong Wang, Kui Ren, and Jia Wang are all with the Department of
Electrical and Computer Engineering, Illinois Institute of Technology,
Chicago, IL 60616. E-mail: {cong,kren,jwang}@ece.iit.edu.

A preliminary version [1] of this paper is to be presented at the 30th IEEE
Conference on Computer Communications (INFOCOM’11).

have to be encrypted before outsourcing [3] so as to
provide end-to-end data confidentiality assurance in the
cloud and beyond. However, ordinary data encryption
techniques in essence prevent cloud from performing
any meaningful operation of the underlying plaintext
data [4], making the computation over encrypted data a
very hard problem. On the other hand, the operational
details inside the cloud are not transparent enough to
customers [5]. As a result, there do exist various moti-
vations for cloud server to behave unfaithfully and to
return incorrect results, i.e., they may behave beyond
the classical semi-honest model. For example, for the
computations that require a large amount of computing
resources, there are huge financial incentives for the
cloud to be “lazy” if the customers cannot tell the cor-
rectness of the output. Besides, possible software bugs,
hardware failures, or even outsider attacks might also
affect the quality of the computed results. Thus, we
argue that the cloud is intrinsically not secure from the
viewpoint of customers. Without providing a mechanism
for secure computation outsourcing, i.e., to protect the
sensitive input and output information of the workloads
and to validate the integrity of the computation result,
it would be hard to expect cloud customers to turn over
control of their workloads from local machines to cloud
solely based on its economic savings and resource flex-
ibility. For practical consideration, such a design should
further ensure that customers perform less amount of
operations following the mechanism than completing the
computations by themselves directly. Otherwise, there is
no point for customers to seek help from cloud.

2

Recent researches in both the cryptography and the
theoretical computer science communities have made
steady advances in “secure outsourcing expensive com-
putations” (e.g. [6]–[11]). Based on Yao’s garbled cir-
cuits [12] and Gentry’s breakthrough work on fully ho-
momorphic encryption (FHE) scheme [13], a general re-
sult of secure computation outsourcing has been shown
viable in theory [10], where the computation is repre-
sented by an encrypted combinational boolean circuit
that allows to be evaluated with encrypted private in-
puts. However, applying this general mechanism to our
daily computations would be far from practical, due to
the extremely high complexity of FHE operation as well
as the pessimistic circuit sizes that cannot be handled
in practice when constructing original and encrypted
circuits. This overhead in general solutions motivates
us to seek efficient solutions at higher abstraction levels
than the circuit representations for specific computation
outsourcing problems. Although some elegant designs
on secure outsourcing of scientific computations, se-
quence comparisons, and matrix multiplication etc. have
been proposed in the literature, it is still hardly possible
to apply them directly in a practically efficient manner,
especially for large problems. In those approaches, either
heavy cloud-side cryptographic computations [8], [9], or
multi-round interactive protocol executions [6], or huge
communication complexities [11], are involved (detailed
discussions in Section 7). In short, practically efficient
mechanisms with immediate practices for secure com-
putation outsourcing in cloud are still missing.

Focusing on engineering computing and optimization
tasks, in this paper, we study practically efficient mecha-
nisms for secure outsourcing of linear programming (LP)
computations. Linear programming is an algorithmic
and computational tool which captures the first order
effects of various system parameters that should be
optimized, and is essential to engineering optimization.
It has been widely used in various engineering disci-
plines that analyze and optimize real-world systems,
such as packet routing, flow control, power manage-
ment of data centers, etc. [14]. Because LP computations
require a substantial amount of computational power
and usually involve confidential data, we propose to
explicitly decompose the LP computation outsourcing
into public LP solvers running on the cloud and private
LP parameters owned by the customer. The flexibility of
such a decomposition allows us to explore higher-level
abstraction of LP computations than the general circuit
representation for the practical efficiency.

Specifically, we first formulate private data owned
by the customer for LP problem as a set of matrices
and vectors. This higher level representation allows us
to apply a set of efficient privacy-preserving problem
transformation techniques, including matrix multiplica-
tion and affine mapping, to transform the original LP
problem into some random one while protecting the
sensitive input/output information. One crucial benefit
of this higher level problem transformation method is

that existing algorithms and tools for LP solvers can
be directly reused by the cloud server. Although the
generic mechanism defined at circuit level, e.g. [10],
can even allow the customer to hide the fact that the
outsourced computation is LP, we believe imposing this
more stringent security measure than necessary would
greatly affect the efficiency. To validate the computation
result, we utilize the fact that the result is from cloud
server solving the transformed LP problem. In particular,
we explore the fundamental duality theorem together
with the piece-wise construction of auxiliary LP problem
to derive a set of necessary and sufficient conditions that
the correct result must satisfy. Such a method of result
validation can be very efficient and incurs close-to-zero
additional overhead on both customer and cloud server.
With correctly verified result, customer can use the secret
transformation to map back the desired solution for his
original LP problem. We summarize our contributions
as follows:

1) For the first time, we formalize the problem of
securely outsourcing LP computations, and pro-
vide such a secure and practical mechanism de-
sign which fulfills input/output privacy, cheating
resilience, and efficiency.

2) Our mechanism brings cloud customer great com-
putation savings from secure LP outsourcing as it
only incurs O(nρ) for some 2 < ρ ≤ 3 local com-
putation overhead on the customer, while solving
a normal LP problem usually requires more than
O(n3) time [14].

3) The computations done by the cloud server shares
the same time complexity of currently practical
algorithms for solving the linear programming
problems, which ensures that the use of cloud is
economically viable.

4) The experiment evaluation further demonstrates
the immediate practicality: our mechanism can al-
ways help customers achieve more than 30× sav-
ings when the sizes of the original LP problems
are not too small, while introducing no substantial
overhead on the cloud.

The rest of the paper is organized as follows. Section
2 introduces the system and threat model, and our
design goals. Then we provide the detailed mechanism
description in Section 3, followed by the security analysis
in Section 4 and some further considerations in Section
5. We give performance evaluation in Section 6, followed
by Section 7 which overviews the related work. Finally,
Section 8 concludes the whole paper.

2 PROBLEM STATEMENT

2.1 System and Threat Model
We consider a computation outsourcing architecture in-
volving two different entities, as illustrated in Fig. 1: the
cloud customer, who has large amount of computationally
expensive LP problems to be outsourced to the cloud;
the cloud server (CS), which has significant computation

3

Customer

LP problem Φ

Cloud

Servers

Encrypt LP problem ΦK

Answer to Φ Verify &

Decrypt

Answer to ΦK

Proof Γ

Secret K

Fig. 1: Architecture of secure outsourcing linear pro-
gramming problems in Cloud Computing

resources and provides utility computing services, such
as hosting the public LP solvers in a pay-per-use manner.

The customer has a large-scale linear programming
problem Φ (to be formally defined later) to be solved.
However, due to the lack of computing resources, like
processing power, memory, and storage etc., he cannot
carry out such expensive computation locally. Thus, the
customer resorts to CS for solving the LP computation
and leverages its computation capacity in a pay-per-use
manner. Instead of directly sending original problem Φ,
the customer first uses a secret K to map Φ into some
encrypted version ΦK and outsources problem ΦK to CS.
CS then uses its public LP solver to get the answer of ΦK
and provides a correctness proof Γ, but it is supposed
to learn nothing or little of the sensitive information
contained in the original problem description Φ. After
receiving the solution of encrypted problem ΦK , the
customer should be able to first verify the answer via
the appended proof Γ. If it’s correct, he then uses the
secret K to map the output into the desired answer for
the original problem Φ.

The security threats faced by the computation model
primarily come from the malicious behavior of CS. We
assume that the CS may behave beyond “honest-but-
curious”, i.e. the semi-honest model that was assumed
by many previous researches (e.g., [15], [16]), either
because it intends to do so or because it is compromised.
The CS may be persistently interested in analyzing the
encrypted input sent by the customer and the encrypted
output produced by the computation to learn the sen-
sitive information as in the semi-honest model. In ad-
dition, CS can also behave unfaithfully or intentionally
sabotage the computation, e.g. to lie about the result to
save the computing resources, while hoping not to be
caught at the same time.

We assume the communication channels between the
cloud server and the customer are reliably authenticated,
which can be achieved in practice with little overhead.
These authentication handshakes are omitted in the fol-
lowing presentation.

2.2 Design Goals
To enable secure and practical outsourcing of LP un-
der the aforementioned model, our mechanism design
should achieve the following security and performance
guarantees.

1) Correctness: Any cloud server that faithfully fol-
lows the mechanism must produce an output that

can be decrypted and verified successfully by the
customer.

2) Soundness: No cloud server can generate an in-
correct output that can be decrypted and verified
successfully by the customer with non-negligible
probability.

3) Input/output privacy: No sensitive information
from the customer’s private data can be derived
by the cloud server during performing the LP
computation.

4) Efficiency: The local computations done by cus-
tomer should be substantially less than solving the
original LP on his own. The computation burden
on the cloud server should be within the compara-
ble time complexity of existing practical algorithms
solving LP problems.

2.3 Background on Linear Programming
An optimization problem is usually formulated as a
mathematical programming problem that seeks the val-
ues for a set of decision variables to minimize (or
maximize) an objective function representing the cost
subject to a set of constraints. For linear programming,
the objective function is an affine function of the decision
variables, and the constraints are a system of linear
equations and inequalities. Since a constraint in the
form of a linear inequality can be expressed as a linear
equation by introducing a non-negative slack variable,
and a free decision variable can be expressed as the
difference of two non-negative auxiliary variables, any
linear programming problem can be expressed in the
following standard form,

minimize cTx subject to Ax = b,x ≥ 0. (1)

Here x is an n × 1 vector of decision variables, A is an
m × n matrix, c is an n × 1 column vector, and b is
an m× 1 column vector. It can be assumed further that
m ≤ n and that A has full row rank; otherwise, extras
rows can always be eliminated from A.

In this paper, we study a more general form as follows,

minimize cTx subject to Ax = b,Bx ≥ 0. (2)

In Eq. (2), we replace the non-negative requirements in
Eq. (1) by requiring that each component of Bx to be
non-negative, where B is an n× n non-singular matrix,
i.e. Eq. (2) degenerates to Eq. (1) when B is the identity
matrix. Thus, the LP problem can be defined via the
tuple Φ = (A,B,b, c) as input, and the solution x as
output.

3 THE PROPOSED SCHEMES

This section presents our LP outsourcing scheme which
provides a complete outsourcing solution for – not only
the privacy protection of problem input/output, but also
its efficient result checking. We first give an overview
of our methodology, and systematically justify why and

4

Linear Programming

System of Linear Equations

Matrix/Vector Operations

Scalar Operations

Boolean Gates

M
o
re
S
e
c
u
re
,

M
o
re
E
x
p
re
s
s
ib
ili
ty

M
o
re
E
ffic
ie
n
t

Fig. 2: A hierarchy of computations and mechanisms

how we can leverage the security/efficiency tradeoffs
through properly-chosen problem decomposition. We
next present the design framework for secure LP out-
sourcing and discuss a few basic techniques and their
demerits. This leads to a stronger problem transforma-
tion design utilizing affine mapping. We then discuss
effective result verification mechanisms by leveraging
the duality property of LP. Finally, we give the full
scheme description.

3.1 Methodology Overview

Secure LP outsourcing in cloud can be represented by
decomposing LP computation into public LP solvers
running on the cloud and private data owned by the
customer. Because different decompositions of LP usu-
ally lead to different trade-offs among efficiency and
security guarantees, how to choose the right one that
is most suitable for our design goal is thus of critical
importance. To systematically study the difference, we
organize the different decompositions into a hierarchy,
as shown in Fig. 2, which ensembles the usual way that
a computation is specified: a computation at a higher
abstraction level is made up from the computations
at lower abstraction levels. As we move up to higher
abstraction levels within the hierarchy, more information
about the computations becomes public so that security
guarantees become weaker, but more structures become
available and the mechanisms become more efficient. As
we move down to lower abstraction levels, the structures
become generic but less information is available to the
cloud so that stronger security guarantees could be
achieved at the cost of efficiency.

Because our goal is to design practically efficient
mechanisms of secure LP outsourcing, in this paper, we
focus on the top level of the hierarchy in Fig. 2. In other
words, we propose to study problem transformation
techniques that enable customers to secretly transform
the original LP into some random one to achieve the
secure LP outsourcing design.

3.2 Mechanism Design Framework

The general framework is adopted from a generic ap-
proach [10], while our instantiation is completely differ-
ent and novel. In this framework, the process on cloud
server can be represented by algorithm ProofGen and

the process on customer can be organized into three
algorithms (KeyGen, ProbEnc, ResultDec). These four al-
gorithms are summarized below and will be instantiated
later.
• KeyGen(1k) → {K}. This is a randomized key genera-

tion algorithm which takes a system security parameter k,
and returns a secret key K that is used later by customer
to encrypt the target LP problem.

• ProbEnc(K,Φ) → {ΦK}. This algorithm encrypts the
input tuple Φ into ΦK with the secret key K. According
to problem transformation, the encrypted input ΦK has
the same form as Φ, and thus defines the problem to be
solved in the cloud.

• ProofGen(ΦK) → {(y,Γ)}. This algorithm augments a
generic solver that solves the problem ΦK to produce both
the output y and a proof Γ. The output y later decrypts
to x, and Γ is used later by the customer to verify the
correctness of y or x.

• ResultDec(K,Φ,y,Γ) → {x,⊥}. This algorithm may
choose to verify either y or x via the proof Γ. In any case,
a correct output x is produced by decrypting y using the
secret K. The algorithm outputs ⊥ when the validation
fails, indicating the cloud server was not performing the
computation faithfully.

Note that our proposed mechanism provides us one-
time-pad type of flexibility. Namely, we shall never use
the same secret key K to two different problems. Thus,
for security analysis of the mechanism, we focus on
the ciphertext only attack. We do not consider known-
plaintext attack in this paper but do allow adversaries
to do offline guessing via various problem-dependent
information including sizes and signs of the solution,
which are not necessarily confidential.

3.3 Basic Techniques
Before presenting the details of our proposed mech-
anism, we study in this subsection a few basic tech-
niques and show that the input encryption based on
these techniques along may result in an unsatisfactory
mechanism. However, the analysis will give insights on
how a stronger mechanism should be designed. Note
that to simplify the presentation, we assume that the
cloud server honestly performs the computation, and
defer the discussion on soundness to a later section.

3.3.1 Hiding equality constraints (A,b)

First of all, a randomly generated m × m non-singular
matrix Q can be part of the secret key K. The customer
can apply the matrix to Eq. (2) for the following con-
straints transformation,

Ax = b ⇒ A′x = b′

where A′ = QA and b′ = Qb.
Since we have assumed that A has full row rank, A′

must have full row rank. Without knowing Q, it is not
possible for one to determine the exact elements of A.
However, the nullspaces of A and A′ remains the same,

5

which may violate the security requirement of some
applications. The vector b is encrypted in a perfect way
since it can be mapped to an arbitrary b′ with a proper
choice of Q.

3.3.2 Hiding inequality constraints (B)

The customer cannot transform the inequality con-
straints in the similar way as used for the equality
constraints, because for an arbitrary invertible matrix Q,
Bx ≥ 0 is not equivalent to QBx ≥ 0 in general.

To hide B, we can leverage the fact that a feasible
solution to Eq. (2) must satisfy the equality constraints.
To be more specific, the feasible regions defined by the
following two groups of constraints are the same,{

Ax = b

Bx ≥ 0
⇒

{
Ax = b

(B− λA)x = B′x ≥ 0,

where λ is a randomly generated n × m matrix in K
satisfying that |B′| = |B−λA| 6= 0 and λb = 0. Since the
condition λb = 0 is largely underdetermined, it leaves
great flexibility to choose λ in order to satisfy the above
conditions.

3.3.3 Hiding objective functions c and value cTx

Given the widely application of LP, such as the estima-
tion of business annul revenues or personal portfolio
holdings etc., the information contained in objective
function c and optimal objective value cTx might be as
sensitive as the constraints of A,B,b. Thus, they should
be protected, too.

To achieve this, we apply constant scaling to the
objective function, i.e. a real positive scalar γ is gen-
erated randomly as part of encryption key K and c is
replaced by γc. It is not possible to derive the original
optimal objective value cTx without knowing γ first,
since it can be mapped to any value with the same sign.
While hiding the objective value well, this approach does
leak structure-wise information of objective function c.
Namely, the number and position of zero-elements in c
are not protected. Besides, the ratio between the elements
in c are also preserved after constant scaling.
Summarization of basic techniques Overall, the basic
techniques would choose a secret key K = (Q,λ, γ)
and encrypt the input tuple Φ into ΦK = (A′,B′,b′, γc),
which gives reasonable strength of problem input hid-
ing. Also, these techniques are clearly correct in the sense
that solving ΦK would give the same optimal solution
as solving Φ. However, it also implies that although
input privacy is achieved, there is no output privacy.
Essentially, it shows that although one can change the
constraints to a completely different form, it is not nec-
essary the feasible region defined by the constraints will
change, and the adversary can leverage such information
to gain knowledge of the original LP problem. Therefore,
any secure linear programming mechanism must be able
to not only encrypt the constraints but also to encrypt
the feasible region defined by the constraints.

3.4 Enhanced Techniques via Affine Mapping
To enhance the security strength of LP outsourcing, we
must be able to change the feasible region of original LP
and at the same time hide output vector x during the
problem input encryption. We propose to encrypt the
feasible region of Φ by applying an affine mapping on
the decision variables x. This design principle is based
on the following observation: ideally, if we can arbitrarily
transform the feasible area of problem Φ from one vector
space to another and keep the mapping function as the
secret key, there is no way for cloud server to learn the
original feasible area information. Further, such a linear
mapping also serves the important purpose of output
hiding, as illustrated below.

Let M be a random n×n non-singular matrix and r be
an n×1 vector. The affine mapping defined by M and r
transforms x into y = M−1(x + r). Since this mapping is
an one-to-one mapping, the LP problem Φ in Eq. (2) can
be expressed as the following LP problem of the decision
variables y,

minimize cTMy − cT r

subject to AMy = b + Ar

BMy ≥ Br.

Next, by using the basic techniques to pick a random
non-singular Q for equality constraints, then λ for in-
equality constraints, and γ for objective function, this
LP problem can be further transformed to,

minimize γcTMy

subject to QAMy = Q(b + Ar),

BMy − λQAMy ≥ Br− λQ(b + Ar).

One can denote the constraints of above LP via Eq. (3),
A′ = QAM

B′ = (B− λQA)M

b′ = Q(b + Ar)

c′ = γMT c

(3)

If the following conditions hold,

|B′| 6= 0, λb′ = Br, and b + Ar 6= 0, (4)

then the LP problem ΦK = (A′,B′,b′, c′), which is
equivalent to Φ in Eq. (2), can be formulated via Eq. (5),

minimize c′
T
y subject to A′y = b′,B′y ≥ 0. (5)

Remark. Note that during the transformation, we ignore
the constant term cT r as it has nothing to do with final
solution y, and we can always add it back to get the orig-
inal objective value. By keeping the randomly selected
M and r as part of secret key K for affine mapping, it can
be ensured that the feasible region of encrypted problem
ΦK no longer contains any resemblance of the feasible
area in original problem Φ. As we will show later, both
input and output privacy can be achieved by sending
ΦK instead of Φ to the cloud.

6

3.5 Result Verification
Till now, we have been assuming the server is hon-
estly performing the computation, while being interested
learning information of original LP problem. However,
such semi-honest model is not strong enough to capture
the adversary behaviors in the real world. In many cases,
especially when the computation on the cloud requires a
huge amount of computing resources, there exists strong
financial incentives for the cloud server to be “lazy”.
They might either be not willing to commit service-level-
agreed computing resources to save cost, or even be
malicious just to sabotage any following-up computation
at the customers. Since the cloud server promises to
solve the LP problem ΦK = (A′,B′,b′, c′), we propose
to solve the result verification problem by designing a
method to verify the correctness of the solution y of ΦK .
The soundness condition would be a corollary thereafter
when we present the whole mechanism in the next
section. Note that in our design, the workload required
for customers on the result verification is substantially
cheaper than solving the LP problem on their own,
which ensures the great computation savings for secure
LP outsourcing.

The LP problem does not necessarily have an optimal
solution. There are three cases as follows: i) Normal —
there is an optimal solution with finite objective value;
ii) Infeasible — the constraints cannot be all satisfied
at the same time; iii) Unbounded — for the standard
form in Eq. (1), the objective function can be arbitrarily
small while the constraints are all satisfied. Therefore,
the result verification method not only needs to verify a
solution if the cloud server returns one, but also needs to
verify the cases when the cloud server claims that the LP
problem is infeasible or unbounded. We will first present
the proof Γ that the cloud server should provide and the
verification method when the cloud server returns an
optimal solution, and then present the proofs and the
methods for the other two cases, each of which is built
upon the previous one.

3.5.1 The normal case
We first assume that the cloud server returns an optimal
solution y. In order to verify y without actually solving
the LP problems, we design our method by seeking a set
of necessary and sufficient conditions that the optimal
solution must satisfy. We derive these conditions from
the well-studied duality theory of the LP problems [14].
For the primal LP problem ΦK defined as Eq. (5), its
dual problem is defined as,

maximize b′
T
s subject to A′

T
s + B′

T
t = c′, t ≥ 0,

(6)
where s and t are the m × 1 and n × 1 vectors of dual
decision variables respectively. The strong duality of the
LP problems states that if a primal feasible solution y
and a dual feasible solution (s, t) lead to the same primal
and dual objective value, then both y and (s, t) are the
optimal solutions of the primal and the dual problems

respectively [14]. Therefore, we should ask the cloud
server to provide the dual optimal solution as part of
the proof Γ. Then, the correctness of y can be verified
based on the following conditions,

c′
T
y = b′

T
s,A′y = b′,B′y ≥ 0,A′

T
s + B′

T
t = c′, t ≥ 0.

(7)
Here, c′Ty = b′

T
s tests the equivalence of primal and

dual objective value for strong duality. All the remaining
conditions ensure that both y and (s, t) are feasible
solutions of the primal and dual problems, respectively.
Note that due to the possible truncation errors in the
computation, the equality test A′y = b′ can be achieved
in practice by checking whether ||A′y − b′|| is small
enough.

3.5.2 The infeasible case
We then assume that the cloud server claims ΦK to be
infeasible. In this case, we leverage the methods to find a
feasible solution of a LP problem, usually known as the
phase I methods [17]. These methods construct auxiliary
LP problems to determine if the original LP problems
are feasible or not. We choose the following auxiliary
problem,

minimize z subject to −1z ≤ A′y−b′ ≤ 1z,B′y ≥ −1z.
(8)

Clearly, this auxiliary LP problem has an optimal solu-
tion since it has at least one feasible solution and its
objective function is lower-bounded. Further more, one
can prove that Eq. (8) has 0 as the optimal objective value
if and only if ΦK is feasible. (See Lemma 29.11 in [18]).
Thus, to prove ΦK is infeasible, the cloud server must
prove Eq. (8) has a positive optimal objective value. This
can be achieved by including such an optimal solution
and a proof of optimality in Γ, which is readily available
from the method for the normal case.

3.5.3 The unbounded case
Finally, we assume that the cloud server claims ΦK
to be unbounded. The duality theory implies that this
case is equivalent to that ΦK is feasible and the dual
problem of ΦK , i.e. Eq. (6), is infeasible. Therefore, the
cloud server should provide a proof showing that those
two conditions hold. It is straight-forward to provide a
feasible solution of ΦK and then to verify it is actually
feasible. Based on the method for the infeasible case,
the cloud server can prove that Eq. (6) is infeasible by
constructing the auxiliary problem of Eq. (6), i.e.,

minimize z

subject to −1z ≤ A′
T
s + B′

T
t− c′ ≤ 1z (9)

t ≥ −1z,

and showing this problem has positive optimal objective
value.
Remark. For all three cases, the cloud server is required
to provide correctness proof by proving a normal LP
(either ΦK or some auxiliary LP related to ΦK) has

7

an optimal solution. Since most common LP algorithms
like Simplex and Interior Point methods compute both
the primal and dual solutions at the same time [14],
providing the dual optimal solution as the optimality
proof does not incur any additional overhead for cloud
server. Note that the form of auxiliary LP for infeasi-
ble/unbounded cases is not unique. In practice, we can
adjust it to suit the public solver on cloud, which can
be pre-specified by the customer and cloud server with
little cost.

3.6 The Complete Mechanism Description
Based on the previous sections, the proposed mechanism
for secure outsourcing of linear programming in the
cloud is summarized below.
• KeyGen(1k): Let K = (Q,M, r,λ, γ). For the system

initialization, the customer runs KeyGen(1k) to ran-
domly generate a secret K, which satisfies Eq. (4).

• ProbEnc(K,Φ): With secret K and original LP prob-
lem Φ, the customer runs ProbEnc(K,Φ) to compute
the encrypted LP problem ΦK = (A′,B′,b′, c′) from
Eq. (3).

• ProofGen(ΦK): The cloud server attempts to solve
the LP problem ΦK in Eq. (5) to obtain the op-
timal solution y. If the LP problem ΦK has an
optimal solution, Γ should indicate so and include
the dual optimal solution (s, t). If the LP problem
ΦK is infeasible, Γ should indicate so and include
the primal and the dual optimal solutions of the
auxiliary problem in Eq. (8). If the LP problem ΦK is
unbounded, y should be a feasible solution of it, and
Γ should indicate so and include the primal and the
dual optimal solutions of Eq. (9), i.e. the auxiliary
problem of the dual problem of ΦK .

• ResultDec(K,Φ,y,Γ): First, the customer verifies y
and Γ according to the various cases. If they are
correct, the customer computes x = My − r if there
is an optimal solution or reports Φ to be infeasible
or unbounded accordingly; otherwise the customer
outputs ⊥, indicating the cloud server was not
performing the computation faithfully.

4 SECURITY ANALYSIS

4.1 Analysis on Correctness and Soundness Guar-
antee
We give the analysis on correctness and soundness guar-
antee via the following two theorems.

Theorem 1: Our scheme is a correct verifiable linear pro-
gramming outsourcing scheme.

Proof: The proof consists of two steps. First, we show
that for any problem Φ and its encrypted version ΦK ,
solution y computed by honest cloud server will always
be verified successfully. This follows directly from the
correctness of duality theorem of linear programming.
Namely, all conditions derived from duality theorem and
auxiliary LP problem construction for result verification
are necessary and sufficient.

Next, we show that correctly verified solution y al-
ways corresponds to the optimal solution x of origi-
nal problem Φ. For space limit, we only focus on the
normal case. The reasoning for infeasible/unbounded
cases follows similarly. By way of contradiction, suppose
x = My − r is not the optimized solution for Φ. Then,
there exists x∗ such that cTx∗ < cTx, where Ax∗ = b
and Bx∗ ≥ 0. Since x∗ = My∗ − r, it is straightforward
that cTMy∗ − cT r = cTx∗ < cTx = cTMy− cT r, where
A′y∗ = b′ and B′y∗ ≥ 0. Thus, y∗ is a better solution
than y for problem ΦK , which contradicts the fact that
the optimality of y has been correctly verified. This
completes the proof.

Theorem 2: Our scheme is a sound verifiable linear pro-
gramming outsourcing scheme.

Proof: Similar to correctness argument, the sound-
ness of the proposed mechanism follows from the facts
that the LP problem Φ and ΦK are equivalent to each
other through affine mapping, and all the conditions
thereafter for result verification are necessary and suf-
ficient.

4.2 Analysis on Input and Output Privacy Guarantee

We now analyze the input/output privacy guarantee
under the aforementioned ciphertext only attack model.
Specifically, the only information the cloud server ob-
tains is ΦK = (A′,B′,b′, c′), and the obvious fact
that A and B of original LP problem are general full
rank matrices as defined in Eq. (2). Note that under
such model and considering the one-time-pad type of
flexibility of our mechanism (see Section 3.2), offline
guessing on problem input/output does not bring cloud
server any advantage, since there is no way to justify
the validity of the guess. Because in our applications
customers themselves generate and encrypt LP problems
before outsourcing, our security model should work well
in practice.

We start from the relationship between the primal
problem Φ and its encrypted one ΦK . First of all, the
matrix A and the vector b are protected perfectly. Be-
cause for ∀ m × n matrix A′ that has the full row rank
and ∀ n×1 vector b′, ∃ a tuple (Q,M, r) that transforms
(A,b) into (A′,b′). This is straightforward since we
can always find invertible matrices Q,M for equivalent
matrices A and A′ such that A′ = QAM, and then solve
r from b′ = Q(b + Ar). Thus from (A′,b′), cloud can
only derive the rank and size information of original
equality constraints A, but nothing else. Secondly, the in-
formation of matrix B is protected by B′ = (B−λQA)M.
Recall that the n×m matrix λ in the condition λb′ = Br
is largely underdetermined. Namely, for each m× 1 row
vector in λ, there are m−1 elements that can be set freely.
Thus, the unlimited choices of λ, which can be viewed
as encryption key with large key space, ensures that B is
well obfuscated. Thirdly, the vector c is protected well by

8

Customer Cloud Server
1. Generate a random secret key
K = (Q,M, r,λ, γ), satisfying Eq. (4);

2. Use K to encrypt Φ = (A,B,b, c)
ΦK−−−−−−−−−→

encrypted LP
3. If ΦK is normal, solve ΦK with dual optimal

into a random ΦK = (A′,B′,b′, c′); solution of Eq. (6) as part of proof Γ
4. If ΦK is infeasible, prove the auxiliary problem

in Eq. (8) has positive objective value .
solution to ΦK←−−−−−−−−−−
with proof Γ

5. If ΦK is unbounded, prove its dual problem

6. Verify Γ accordingly. If it’s normal case, in Eq. (6) is infeasible.
output x = My − r.

Fig. 3: The complete mechanism for secure LP outsourcing in cloud

scaling factor γ and M. By multiplication of matrix M,
both the elements and the structure pattern of c are no
longer exposed from c′ = γMTc. As for the output, since
M, r is kept as a one-time secret and drawn uniformly
at random, deriving x = My − r solely from y can be
hard for cloud.

Given the complementary relationship of primal and
dual problem, it is also worth looking into the in-
put/output privacy guarantee from dual problems of
both Φ and ΦK . Same as Eq. (6), the dual problem of
Φ is defined as,

maximize bTα subject to ATα + BTβ = c,β ≥ 0,
(10)

where α and β are the m× 1 and n× 1 vectors of dual
decision variables respectively. Clearly, the analysis for
primal problem Φ’s input privacy guarantee still holds
for its dual problem input (A,B,b, c). As for the output
privacy, we plug Eq. (3) into ΦK ’s dual problem defined
in Eq. (6) and rearrange it as,

maximize [Q(b + Ar)]T s

subject to ATQT (s− λT t) + BT t = γc (11)
t ≥ 0,

Note that MT in the equality constraint is canceled
out during the rearrangement. Comparing Eq. (10) and
Eq. (11), we derive the linear mapping between (α,β)
and (s, t) as,

α =
1

γ
QT (s− λT t), β =

1

γ
t (12)

Following similar reasoning for Φ’s output privacy and
analysis for hiding objective function c in basic tech-
niques (Section 3.3.3), the dual decision variables (α,β)
of original problem Φ is protected well by the random
choice of (Q,λ, γ).

5 FURTHER INVESTIGATIONS

From above discussions, we know that both input and
output of the problem Φ has been protected well via the
random choice of keys (Q,M, r,λ, γ). However, it is not
yet clear what the underlying connection between the

two LP problems Φ and ΦK is and how that relationship
could benefit our mechanism design. In this section, we
thoroughly investigate this problem through rigorous
mathematical reasoning. In addition, we discuss how the
uncovered results could affect the possible information
leakage on some special cases, and how we can effec-
tively address them via lightweight techniques.

5.1 Connections between Φ and ΦK

To better understand the connection between Φ and
ΦK , we start by introducing two new problems Ψ and
ΨK , which are derived from Φ and ΦK respectively by
using one more step of transformation. Specifically, for
Φ defined in Eq. (2), we define another LP problem Ψ
via the transformation z = Bx as follows:

minimize cTB−1z subject to AB−1z = b, z ≥ 0.
(13)

Similarly, we can define the LP problem ΨK from ΦK in
Eq. (5) via the transformation w′ = B′y′ as:

minimize c′
T
B′−1w subject to A′B′−1w = b′,w ≥ 0.

(14)
Then, the underlying connections between Φ and ΦK

can be captured by the following theorem:
Theorem 3: For any original LP problem Φ and its trans-

formed problem ΦK derived via our proposed transformation
mechanisms in Section 3.4, the two related transformed prob-
lems Ψ and ΨK share the same feasible region.

To prove Theorem 3, we first prove the following
lemma. Note that hereafter we use I to denote the
identity matrix for different dimensions, and assume the
matrix dimensions always agree without further notice.

Lemma 1: For any m× n matrix S with full row rank m,
m ≤ n, and any n × m matrix λ, if |I− λS| 6= 0, then
|I− Sλ| 6= 0.

Proof: Since (I− λS) is a n× n matrix, we have

S(I− λS) = S− SλS = (I− Sλ)S.

If we compute the rank of the matrices on both sides,
denoted by rank(·), we have

rank(S(I− λS)) = rank((I− Sλ)S)

9

Because |I− λS| 6= 0, from the left hand side we have

rank(S(I− λS)) = rank(S) = m.

On the right hand side, using basic linear algebra prop-
erty we have

m = rank((I− Sλ)S) ≤ min(rank(I− Sλ), rank(S))

= min(rank(I− Sλ),m)

Thus, rank(I− Sλ) = m. Since I− Sλ is an m×m square
matrix, it is indeed invertible, i.e., |I− Sλ| 6= 0.

What Theorem 3 states is equivalent to prove
AB−1x = b and A′B′−1w = b′ have exactly the same
solution set. Thus, all we need to do is to show the
augmented matrix [AB−1 b] can be transformed to
[A′B′−1 b′] by left-multiplying an invertible matrix.

Proof: According to the value A′,B′ in Eq. (3), we
have

A′B′−1 = QA(B− λQA)−1

= QA[(I− λQAB−1)B]−1

= QAB−1(I− λQAB−1)−1

= (I−QAB−1λ)−1QAB−1.

The last equation is derived from Lemma 1 by viewing
QAB−1 as an m×n matrix with full row rank m. Thus,

Q−1(I−QAB−1λ)A′B′−1 = AB−1.

On the other hand, according to Eq. (3) and (4), we have
b′ = Q(b + Ar) and λb′ = Br. Therefore,

Q−1(I−QAB−1λ)b′ = Q−1(b′ −QAB−1λb′)

= Q−1(b′ −QAB−1Br)

= Q−1b′ −Ar = b.

Hence, the m × m random invertible matrix
Q−1(I−QAB−1λ) = (Q−1 −AB−1λ) is the row
transformation matrix we are look for. Thus, it proves
that AB−1x = b and A′B′−1w = b′ have exactly the
same solution set.

Remark. Beyond the resemblance of feasible region, we
must note that the problem Ψ and ΨK are actually two
totally different LP problems, due to the random choice
of λ and Q. In particular, the objective function of Ψ is
cTB−1, while the objective function of ΨK is c′

T
B′
−1

=
γcT (B− λQA)−1 = γcTB−1(I− λQAB−1)−1. Thus, as
long as λ and Q can be set freely and kept secret
together with γ,B,A, solving ΨK does not give adver-
sary any advantage learning either the objective value
or the objective function from Ψ, let alone the corre-
sponding information on Φ. Moreover, since we have
x = My − r = MB′−1w − r = (B− λQA)−1w − r, the
secrecy of output is also protected well by the random
choice of λ,Q, r. Thus, the aforementioned security anal-
ysis in Section 4.2 still holds.

5.2 Enhancements on Feasible Region Protection

From Theorem 3, we know that an adversary can learn
the feasible region on Ψ from ΨK . However, he cannot
learn further information on Φ from Ψ due to the un-
known value of B, which serves for the transformation
key between Φ and Ψ. While this is true when B is some
general invertible matrix as we assumed throughout this
paper, there might be an issue for the special case of
B = I. Because when B = I, Φ and Ψ becomes equiva-
lent to each other. Thus, the adversary in possession of
ΨK may know the feasible region of original problem Φ
through Ψ directly.

To avoid this unwanted information leakage on fea-
sible region, we propose to use an additional general-
ized permutation matrix (from products of non-singular
diagonal and permutation matrices) P with positive1

non-zero elements to multiply both sides of B′y ≥ 0
in Eq. (3) and get B′′ = PB′y ≥ 0, which is now our
final transformed inequality constraints. By doing so,
the constraint of ΨK is now changed to A′B′′−1w =
A′B′−1P−1w = b′,w ≥ 0. Due to the random choice
of P, ΨK ’s feasible region is no longer the same as
Ψ in Eq. (13) any more. That is, AB−1x = b and
A′B′−1P−1w = b′ no longer have the same solution set.
Note that P does not have to be introduced for every
transformation but only at this special case for enhanced
protection of feasible region. Since P is a generalized
permutation matrix, multiplying P to B′ only incurs
O(n2) cost, which can indeed be deemed lightweight,
compared to other O(n3) matrix-matrix multiplications
incurred in the problem transformation design.

6 PERFORMANCE ANALYSIS

6.1 Theoretic Analysis

6.1.1 Customer Side Overhead

For the three customer side algorithms KeyGen,
ProbEnc, and ResultDec, it is straight-forward that
the most time-consuming operations are the matrix-
matrix multiplications in problem encryption algorithm
ProbEnc. Since m ≤ n, the time complexity for the cus-
tomer local computation is thus asymptotically the same
as matrix-matrix multiplication, i.e., O(nρ) for some
2 < ρ ≤ 3. In our experiment, the matrix multiplication is
implemented via standard cubic-time method, thus the
overall computation overhead is O(n3). However, other
more efficient matrix multiplication algorithms can also
be adopted, such as the Strassen’s algorithm with time
complexity O(n2.81) [19] or the Coppersmith-Winograd
algorithm [20] in O(n2.376). In either case, the customer
side efficiency can be further improved.

1. In fact, if P has negative values, the only difference is that not
all the rows in PB′y will remain larger than 0. Though it won’t affect
our result, for ease of presentation, we refine non-zero elements in P
to be positive.

10

6.1.2 Server Side Overhead
For cloud server, its only computation overhead is to
solve the encrypted LP problem ΦK as well as generating
the result proof Γ, both of which correspond to the
algorithm ProofGen. If the encrypted LP problem ΦK
belongs to normal case, cloud server just solves it with
the dual optimal solution as the result proof Γ, which
is usually readily available in the current LP solving
algorithms and incurs no additional cost for cloud (see
Section 3.5). If the encrypted problem ΦK does not have
an optimal solution, additional auxiliary LP problems
can be solved to provide a proof. Because for general
LP solvers, phase I method (solving the auxiliary LP) is
always executed at first to determine the initial feasible
solution [17], proving the auxiliary LP with optimal so-
lutions also introduces little additional overhead. Thus,
in all the cases, the computation complexity of the cloud
server is asymptotically the same as to solve a normal
LP problem, which usually requires more than O(n3)
time [14].

Obviously, the customer will not spend more time
to encrypt the problem and solve the problem in the
cloud than to solve the problem on his own. Therefore,
in theory, the proposed mechanism would allow the
customer to outsource their LP problems to the cloud
and gain great computation savings.

6.2 Experiment Results
We now assess the practical efficiency of the proposed
secure and verifiable LP outsourcing scheme with exper-
iments. We implement the proposed mechanism includ-
ing both the customer and the cloud side processes in
Matlab and utilize the MOSEK optimization [21] through
its Matlab interface to solve the original LP problem Φ
and encrypted LP problem ΦK . Both customer and cloud
server computations in our experiment are conducted
on the same workstation with an Intel Core 2 Duo
processor running at 1.86 GHz with 4 GB RAM. In
this way, the practical efficiency of the proposed mecha-
nism can be assessed without a real cloud environment.
We also ignore the communication latency between the
customers and the cloud for this application since the
computation dominates the running time as evidenced
by our experiments.

Our randomly generated test benchmark covers the
small and medium sized problems, where m and n are
increased from 50 to 3200 and 60 to 3840, respectively.
All these benchmarks are for the normal cases with
feasible optimal solutions. Since in practice the infea-
sible/unbounded cases for LP computations are very
rare, we do not include those experiments for the current
work. Table 1 gives our experimental results, where each
entry in the table represents the mean of 20 trials.

In this table, the sizes of the original LP problems
are reported in the first two columns. The times to
solve the original LP problem in seconds, toriginal, are
reported in the third column. The times to solve the

encrypted LP problem in seconds are reported in the
fourth and fifth columns, separated into the time for
the cloud server tcloud and the time for the customer
tcustomer. Note that since each KeyGen would generate
a different key, the encrypted LP problem ΦK generated
by ProbEnc would be different and thus result in a
different running time to solve it. The tcloud and tcustomer
reported in Table 1 are thus the average of multiple
trials. We propose to assess the practical efficiency by
two characteristics calculated from toriginal, tcloud, and
tcustomer. The Asymmetric Speedup, calculated as toriginal

tcustomer
,

represents the savings of the computing resources for
the customers to outsource the LP problems to the cloud
using the proposed mechanism. The Cloud Efficiency, cal-
culated as toriginal

tcloud
, represents the overhead introduced to

the overall computation by the proposed mechanism. It
can be seen from the table that we can always achieve
more than 30× savings when the sizes of the original
LP problems are not too small. On the other hand, from
the last column, we can claim that for the whole system
including the customers and the cloud, the proposed
mechanism will not introduce a substantial amount of
overhead. It thus confirms that secure outsourcing LP in
cloud computing is economically viable.

7 RELATED WORK

7.1 Work on Secure Computation Outsourcing

General secure computation outsourcing that fulfills
all aforementioned requirements, such as input/output
privacy and correctness/soundness guarantee has been
shown feasible in theory by Gennaro et al. [10]. However,
it is currently not practical due to its huge computation
complexity. Instead of outsourcing general functions, in
the security community, Atallah et al. explore a list of
work [6], [8], [9], [11] for securely outsourcing specific
applications. The customized solutions are expected to
be more efficient than the general way of construct-
ing the circuits. In [6], they give the first investiga-
tion of secure outsourcing of numerical and scientific
computation. A set of problem dependent disguising
techniques are proposed for different scientific applica-
tions like linear algebra, sorting, string pattern matching,
etc. However, these disguise techniques explicitly allow
information disclosure to certain degree. Besides, they
do not handle the important case of result verification,
which in our work is bundled into the design and comes
at close-to-zero additional cost. Later on in [8] and [9],
Atallah et al. give two protocol designs for both secure
sequence comparison outsourcing and secure algebraic
computation outsourcing. However, both protocols use
heavy cryptographic primitive such as homomorphic
encryptions [22] and/or oblivious transfer [23] and do
not scale well for large problem set. In addition, both
designs are built upon the assumption of two non-
colluding servers and thus vulnerable to colluding at-
tacks. Based on the same assumption, Hohenberger et

11

TABLE 1: Performance Results. Here toriginal, tcloud, and tcustomer denotes the cloud-side original problem solving
time, cloud-side encrypted problem solving time, and customer-side computation time, respectively. The asymmetric
speedup captures the customer efficiency gain via LP outsourcing. The cloud efficiency captures the overall
computation cost on cloud introduced by solving encrypted LP problem, which should ideally be as close to 1
as possible.

Benchmark Original Problem Encrypted Problem Asymmetric Speedup Cloud Efficiency
small and medium size toriginal (sec) tcloud (sec) tcustomer (sec) toriginal

tcustomer

toriginal

tcloud

1 m = 50, n = 60 0.167 0.170 0.007 26.5 × 0.981
2 m = 100, n = 120 0.227 0.239 0.005 46.7 × 0.956
3 m = 200, n = 240 0.630 0.613 0.017 37.3 × 1.037
4 m = 400, n = 480 3.033 3.671 0.090 33.5 × 0.835
5 m = 800, n = 960 19.838 23.527 0.569 34.9 × 0.851
6 m = 1,600, n = 1,920 171.862 254.012 4.015 42.6 × 0.690
7 m = 3,200, n = 3,840 1,757.570 2,661.360 47.602 36.4 × 0.745

al. [7] provide protocols for secure outsourcing of mod-
ular exponentiation, which is considered as prohibitively
expensive in most public-key cryptography operations.
Very recently, Atallah [11] et al. give a provably secure
protocol for secure outsourcing matrix multiplications
based on secret sharing [24]. While this work outper-
forms their previous work [9] in the sense of single
server assumption and computation efficiency (no ex-
pensive cryptographic primitives), the drawback is the
large communication overhead. Namely, due to secret
sharing technique, all scalar operations in original matrix
multiplication are expanded to polynomials, introducing
significant amount of overhead. Considering the case
of the result verification, the communication overhead
must be further doubled, due to the introducing of
additional pre-computed “random noise” matrices.

In short, these solutions, although elegant, are still not
efficient enough for immediate practical uses, which we
aim to address for the secure LP outsourcing in this
paper.

7.2 Work on Secure Multiparty Computation
Another large existing list of work that relates to (but
is also significantly different from) ours is Secure Multi-
party Computation (SMC), first introduced by Yao [12].
SMC allows two or more parties to jointly compute some
general function while hiding their inputs to each other.
As general SMC can be very inefficient, Du and Atallah
et. al. have proposed a series of customized solutions
under the SMC context to a spectrum of special com-
putation problems, such as privacy-preserving coopera-
tive statistical analysis, scientific computation, geometric
computations, sequence comparisons, etc. [25]. How-
ever, directly applying these approaches to the cloud
computing model for secure computation outsourcing
would still be problematic. The major reason is that they
did not address the asymmetry among the computa-
tional powers possessed by cloud and the customers,
i.e., all these schemes in the context of SMC impose
each involved parties comparable computation burdens,
which we specifically avoid in the mechanism design

by shifting as much as possible computation burden to
cloud only. Another reason is the asymmetric security
requirement. In SMC no single involved party knows
all the problem input information, making result ver-
ification a very difficult task. But in our model, we
can explicitly exploit the fact that the customer knows
all input information and thus design efficient result
verification mechanism.

Under the SMC model, Li and Atallah [26] give the
first study for secure and collaborative computation
of linear programming. Their solution is based on the
additive split of the constraint matrix between two in-
volved parties, followed by a series of interactive (and
arguably heavy) cryptographic protocols collaboratively
executed in each iteration step of the Simplex Algorithm.
The work does not provide practical performance for
big size problems. Besides, they only consider honest-
but-curious model and thus do not guarantee that the
final solution is optimal. Following the same framework,
Toft [27] also proposes a secure Simplex Algorithm based
on secret sharing, which outperforms the one in [26]
with slightly better protocol complexity. In [28], Vaidya
presented a revised Simplex Algorithm based on secure
scalar product and secure comparison protocols, but the
method only applies to the case where one party holds
the cost function, and the other holds the constraints.
Recently, Catrina et al. [29] propose a secure multiparty
linear programming via fixed-point arithmetics. Though
more efficient than the work in [26], [27], their approach
still only works for relatively small size problems, and
does not enjoy the computational simplicity as our mech-
anism. Moreover, all these designs have the computation
asymmetry issue mentioned previously, and thus are not
suitable for the computation outsourcing scenario.

In other related work, both Du [30] and Vaidya [31]
have studied using disguising matrix based transforma-
tion approaches to tackle privacy-preserving linear pro-
gramming problems. However, as later pointed out by
Bednarz et al. [32], both Du’s and Vaidya’s approaches
have correctness flaws, which may lead to returned solu-
tions falling into infeasible region of original problems.

12

To fix the problem, Bednarz et al. [32] propose to use
generalized permutation matrices with only positive el-
ements to disguise the linear constraints. However, such
permutation matrices explicitly preserve the number of
zero elements (aka. sparsity) of both the original con-
straint matrix and the original problem solution. Thus
the input/ouput protection is not complete. Note that
this is not the case in our generalized affine mapping
based approach (see Section 4.2). Very recently, Man-
gasarian proposes two privacy-preserving formulations
of linear programming over vertically [33] and hori-
zontally partitioned [34] constraint matrix, respectively,
among different involved entities. Both approaches are
designed under SMC model and do not support a way
to guarantee the quality of final solution in case of
maliciously adversaries. Additionally, in his horizontally
partitioned problem setting, the proposed approach is
limited to hiding equality constraints only, and leaves
secrecy of output unprotected.

7.3 Work on Delegating Computation and Cheating
Detection

Detecting the unfaithful behaviors for computation out-
sourcing is not an easy task, even without consider-
ation of input/output privacy. Verifiable computation
delegation, where a computationally weak customer
can verify the correctness of the delegated computation
results from a powerful but untrusted server without
investing too much resources, has found great interests
in theoretical computer science community. Some recent
general result can be found in Goldwasser et al. [35]. In
distributed computing and targeting the specific compu-
tation delegation of one-way function inversion, Golle et
al. [36] propose to insert some pre-computed results (im-
ages of “ringers”) along with the computation workload
to defeat untrusted (or lazy) workers. Szada et al. [37]
extend the ringer scheme and propose methods to deal
with cheating detection of other classes of computation
outsourcing, including optimization tasks and Monte
Carlo simulations. In [38], Du. et al. propose a method of
cheating detection for general computation outsourcing
in grid computing. The server is required to provide a
commitment via a Merkle tree based on the results it
computed. The customer can then use the commitment
combined with a sampling approach to carry out the
result verification (without re-doing much of the out-
sourced work.)

However, all above schemes allow server actually see
the data and result it is computing with, which is strictly
prohibited in the cloud computing model for data pri-
vacy. Thus, the problem of result verification essentially
becomes more difficult, when both input/output privacy
is demanded. Our work leverages the duality theory
of LP problem and effectively bundles the result veri-
fication within the mechanism design, with little extra
overhead on both customer and cloud server.

8 CONCLUDING REMARKS

In this paper, for the first time, we formalized the prob-
lem of securely outsourcing LP computations in cloud
computing, and provided such a practical mechanism
design which fulfills input/output privacy, cheating re-
silience, and efficiency. By explicitly decomposing LP
computation outsourcing into public LP solvers and
private data, our mechanism design is able to explore
appropriate security/efficiency tradeoffs via higher level
LP computation than the general circuit representation.
We developed problem transformation techniques that
enable customers to secretly transform the original LP
into some random one while protecting sensitive in-
put/output information. We also investigated duality
theorem and derived a set of necessary and sufficient
condition for result verification. Such a cheating re-
silience design can be bundled in the overall mechanism
with close-to-zero additional overhead. Both security
analysis and experiment results demonstrates the imme-
diate practicality of the proposed mechanism.

ACKNOWLEDGEMENT

This work was supported in part by the US National
Science Foundation under grant CNS-0831963.

REFERENCES
[1] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing

of linear programming in cloud computing,” in Proc. of IEEE
INFOCOM, 2011, to appear.

[2] P. Mell and T. Grance, “Draft nist working definition of cloud
computing,” Referenced on Jan. 23rd, 2010 Online at http://csrc.
nist.gov/groups/SNS/cloud-computing/index.html, 2010.

[3] Cloud Security Alliance, “Security guidance for critical areas
of focus in cloud computing,” 2009, online at http://www.
cloudsecurityalliance.org.

[4] C. Gentry, “Computing arbitrary functions of encrypted data,”
Commun. ACM, vol. 53, no. 3, pp. 97–105, 2010.

[5] Sun Microsystems, Inc., “Building customer trust in cloud com-
puting with transparent security,” 2009, online at https://www.
sun.com/offers/details/sun transparency.xml.

[6] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H. Spaf-
ford, “Secure outsourcing of scientific computations,” Advances in
Computers, vol. 54, pp. 216–272, 2001.

[7] S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Proc. of TCC, 2005, pp. 264–282.

[8] M. J. Atallah and J. Li, “Secure outsourcing of sequence compar-
isons,” Int’l J. Inf. Sec., vol. 4, no. 4, pp. 277–287, 2005.

[9] D. Benjamin and M. J. Atallah, “Private and cheating-free out-
sourcing of algebraic computations,” in Proc. of Int’l Conf. on
Privacy, Security, and Trust (PST), 2008, pp. 240–245.

[10] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in
Proc. of CRYPTO, Aug. 2010.

[11] M. Atallah and K. Frikken, “Securely outsourcing linear algebra
computations,” in Proc. of ASIACCS, 2010, pp. 48–59.

[12] A. C.-C. Yao, “Protocols for secure computations (extended ab-
stract),” in Proc. of FOCS, 1982, pp. 160–164.

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proc of STOC, 2009, pp. 169–178.

[14] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd ed.
Springer, 2008.

[15] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked
keyword search over encrypted cloud data,” in Proc. of ICDCS,
2010.

[16] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained access control in cloud computing,” in Proc. of
IEEE INFOCOM’10, San Diego, CA, USA, March 2010.

13

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Intro-
duction to Algorithms, 2nd ed. MIT press, 2008.

[19] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math.,
vol. 13, pp. 354–356, 1969.

[20] D. Coppersmith and S. Winograd, “Matrix multiplication via
arithmetic progressions,” in Proc. of STOC, 1987, pp. 1–6.

[21] MOSEK ApS, “The MOSEK Optimization Software,” Online at
http://www.mosek.com/, 2010.

[22] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. of EUROCRYPT, 1999, pp. 223–238.

[23] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol
for signing contracts,” Commun. ACM, vol. 28, no. 6, pp. 637–647,
1985.

[24] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[25] W. Du and M. J. Atallah, “Secure multi-party computation prob-
lems and their applications: a review and open problems,” in Proc.
of New Security Paradigms Workshop (NSPW), 2001, pp. 13–22.

[26] J. Li and M. J. Atallah, “Secure and private collaborative linear
programming,” in Proc. of Int’l Conf. on Collaborative Computing,
2006.

[27] T. Toft, “Solving linear programs using multiparty computation,”
in Proc. of Financial Cryptography and Data Security, 2009, pp. 90–
107.

[28] J. Vaidya, “A secure revised simplex algorithm for privacy-
preserving linear programming,” in Proc. of IEEE Conf. on Ad-
vanced Information Networking and Applications (AINA), 2009.

[29] O. Catrina and S. De Hoogh, “Secure multiparty linear program-
ming using fixed-point arithmetic,” in Proc. of ESORICS, 2010, pp.
134–150.

[30] W. Du, “A study of several specific secure two-party computation
problems,” Ph.D. dissertation, Purdue University, Indiana, 2001.

[31] J. Vaidya, “Privacy-preserving linear programming,” in Proc. of
24th ACM Symposium on Applied Computing, 2009.

[32] A. Bednarz, N. Bean, and M. Roughan, “Hiccups on the road
to privacy-preserving linear programming,” in Proc. of ACM
workshop on Privacy in the Electronic Society (WPES), 2009.

[33] O. L. Mangasarian, “Privacy-preserving linear programming,”
Optimization Letters, vol. 5, pp. 165–172, 2011.

[34] ——, “Privacy-preserving horizontally-partitioned linear pro-
gramming,” Optimization Letters, 2011, to appear.

[35] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
computation: interactive proofs for muggles,” in Proc. of STOC,
2008, pp. 113–122.

[36] P. Golle and I. Mironov, “Uncheatable distributed computations,”
in Proc. of CT-RSA, 2001, pp. 425–440.

[37] D. Szajda, B. G. Lawson, and J. Owen, “Hardening functions for
large scale distributed computations,” in Proc. of IEEE Symposium
on Security and Privacy, 2003, pp. 216–224.

[38] W. Du, J. Jia, M. Mangal, and M. Murugesan, “Uncheatable grid
computing,” in Proc. of ICDCS, 2004, pp. 4–11.

