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Abstract—Cloud computing economically enables customers with limited computational resources to outsource large-scale computa-
tions to the cloud. However, how to protect customers’ confidential data involved in the computations then becomes a major security
concern. In this paper, we present a secure outsourcing mechanism for solving large-scale systems of linear equations (LE) in cloud.
Because applying traditional approaches like Gaussian elimination or LU decomposition (aka. direct method) to such large-scale
LE problems would be prohibitively expensive, we build the secure LE outsourcing mechanism via a completely different approach
— iterative method, which is much easier to implement in practice and only demands relatively simpler matrix-vector operations.
Specifically, our mechanism enables a customer to securely harness the cloud for iteratively finding successive approximations to the
LE solution, while keeping both the sensitive input and output of the computation private. For robust cheating detection, we further
explore the algebraic property of matrix-vector operations and propose an efficient result verification mechanism, which allows the
customer to verify all answers received from previous iterative approximations in one batch with high probability. Thorough security
analysis and prototype experiments on Amazon EC2 demonstrate the validity and practicality of our proposed design.

Index Terms—Confidential data, computation outsourcing, system of linear equations, cloud computing.
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1 INTRODUCTION

Cloud Computing provides on-demand network access
to a shared pool of configurable computing resources
that can be rapidly deployed with great efficiency and
minimal management overhead [2]. Under such un-
precedented computing model, customers with compu-
tationally weak devices are no longer limited by the
slow processing speed, memory, and other hardware
constraints, but can enjoy the literally unlimited com-
puting resources in the cloud through the convenient yet
flexible pay-per-use manners [3].

Despite the tremendous benefits, the fact that cus-
tomers and cloud are not necessarily in the same
trusted domain brings many security concerns and chal-
lenges towards this promising computation outsourcing
model [4]. Firstly, customer’s data that are processed and
generated during the computation in cloud are often
sensitive in nature, such as business financial records,
proprietary research data, and personally identifiable
health information etc [5]. While applying ordinary en-
cryption techniques to these sensitive information before
outsourcing could be one way to combat the security
concern, it also makes the task of computation over en-
crypted data in general a very difficult problem [6]. Sec-
ondly, since the operational details inside the cloud are
not transparent enough to customers [5], no guarantee is
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provided on the quality of the computed results from the
cloud. For example, for computations demanding a large
amount of resources, there are huge financial incentives
for the cloud server to be “lazy” if the customer cannot
tell the correctness of the answer. Besides, possible soft-
ware/hardware malfunctions and/or outsider attacks
might also affect the quality of the computed results.
Thus, we argue that the cloud is intrinsically not secure
from the viewpoint of customers. Without providing a
mechanism for secure computation outsourcing, i.e., to
protect the sensitive input and output information of
the outsourced computing needs and to validate the
integrity of the computation result, it would be hard
to expect cloud customers to turn over control of their
computing needs from local machines to cloud solely
based on its economic savings and resource flexibility.

Focusing on the engineering and scientific computing
problems, this paper investigates secure outsourcing for
widely applicable large-scale systems of linear equations
(LE), which are among the most popular algorithmic
and computational tools in various engineering disci-
plines that analyze and optimize real-world systems.
By “large”, we mean the storage requirements of the
system coefficient matrix may easily exceed the available
memory of the customer’s computing device [7], like
a modern portable laptop. In practice, there are many
real world problems that would lead to very large-
scale and even dense systems of linear equations with
up to hundreds of thousands [8], [9] or a few million
unknowns [10]. For example, a typical double-precision
50, 000×50, 000 system matrix resulted from electromag-
netic application would easily occupy up to 20 GBytes
storage space, seriously challenging the computational
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power of these low-end computing devices. Because the
execution time of a computer program depends not only
on the number of operations it must execute, but also
on the location of the data in the memory hierarchy of
the computer [7], solving such large-scale problems on
customer’s weak computing devices can be practically
impossible, due to the inevitably involved huge IO cost.
Therefore, resorting to cloud for such computation inten-
sive tasks can be arguably the only choice for customers
with weak computational power, especially when the
solution is demanded in a timely fashion.

It is worth noting that in the literature, several cryp-
tographic protocols for solving various core problems
in linear algebra, including the systems of linear equa-
tions [11]–[16] have already been proposed from the
secure multiparty computation (SMC) community. How-
ever, these approaches are in general ill-suited in the
context of computation outsourcing model with large
problem size. First and foremost, all these work devel-
oped under SMC model do not address the asymmetry
among the computational power possessed by cloud and
the customer, i.e., they all impose each involved party
comparable computation burdens, which in this paper
our design specifically intends to avoid (otherwise, there
is no point for the customer seeking help from cloud).
Secondly, the framework of SMC usually assumes each
involved party knows a portion of the problem input
information (e.g., each party knows only a share of the
coefficient matrix). This assumption is not true any more
in our model, where the information leakage on both the
input and output of the LE problem to the cloud should
be strictly forbidden. Last but not the least, almost all
these solutions are focusing on the traditional direct
method for jointly solving the LE, like the joint Gaussian
elimination method in [12], [15], or the secure matrix
inversion method in [13]. While working well for small
size problems, these approaches in general do not derive
practically acceptable solution time for large-scale LE,
due to the expensive cubic-time computational burden
for matrix-matrix operations and the huge IO cost on
customer’s weak devices (detailed discussions in Section
8).

The analysis from existing approaches and the com-
putational practicality motivates us to design secure
mechanism of outsourcing LE via a completely different
approach — iterative method, where the solution is
extracted via finding successive approximations to the
solution until the required accuracy is obtained (to be
introduced later in Section 2.3.1). Compared to direct
method, iterative method only demands relatively sim-
pler matrix-vector operations (with O(n2) computational
cost), which is much easier to implement in practice
and widely adopted for large-scale LE [8], [10], [17].
To the best of our knowledge, no existing work has
ever successfully tackled secure protocols for iterative
methods on solving large-scale systems of LE in the com-
putation outsourcing model, and we give the first study
in this paper. Specifically, our mechanism utilizes the ad-

ditive homomorphic property of public key encryption
scheme, like the one proposed by Paillier [18], and allows
customers with weak computational devices, starting
from an initial guess, to securely harness the cloud for
finding successive approximations to the solution in a
privacy-preserving and cheating-resilient manner. For a
linear system with n×n coefficient matrix, each iterative
algorithm execution of the proposed mechanism only
incurs O(n) local computational burden on customer’s
weak device and asymptotically eliminates the expensive
IO cost, i.e., no unrealistic memory demands, which
on the other hand may significantly downgrade the
performance if the problem is solved by the customer
alone. To detect any attempted result corruption by
cloud server, we also propose a very efficient cheating
detection mechanism to effectively verify in one batch
of all the computation results by the cloud server from
previous algorithm iterations with high probability. Our
contributions can be summarized as follows:

1) For the first time, we formulate the problem in the
computation outsourcing model for securely solv-
ing large-scale systems of LE via iterative methods,
and provide the secure mechanism design which
fulfills input/output privacy, cheating resilience,
and efficiency.

2) Our mechanism brings computational savings as it
only incurs O(n) local computation burden for the
customer within each algorithm iteration and de-
mands no unrealistic IO cost, while solving large-
scale LE locally usually demands more than O(n2)
computation cost in terms of both time and mem-
ory requirements [10].

3) We explore the algebraic property of matrix-vector
multiplication to design a batch result verification
mechanism, which allows customers to verify all
answers computed by cloud from previous itera-
tions in one batch, and further ensures both the
efficiency advantage and the robustness of the de-
sign.

4) The experiment on Amazon EC2 [19] shows our
mechanism can help customers achieve up to
2.43 × savings when the sizes of the LE problems
are relatively small (n ≤ 50, 000). Better efficiency
gain can be easily anticipated when n goes to larger
size. In particular, when n increases to 500, 000,
the anticipated computational savings for customer
can be up to 26.09 ×.

The rest of the paper is organized as follows. Section
2 introduces the system and threat model, and our
design goals. Then we provide the detailed mechanism
description in Section 4 and Section 5, both with security
analysis. Section 6 gives the discussions on the practical
implementation issues. Section 7 gives the performance
evaluation, followed by Section 8 which overviews the
related work. Finally, Section 9 gives the concluding
remark of the whole paper.
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Fig. 1: Architecture of secure outsourcing problems of
large-scale systems of linear equations in Cloud Com-
puting

2 PROBLEM STATEMENT

2.1 System and Threat Model

We consider a computation outsourcing architecture in-
volving two different entities, as illustrated in Fig. 1: the
cloud customer, who wants to solve some computation-
ally expensive LE problems with his low-end devices;
the cloud server (CS), which has significant computation
resources to provide utility computing services.

The customer has a large-scale system of LE problem
Ax = b, denoted as Φ = (A,b), to be solved. However,
due to the lack of computing resources, like processing
power, memory, and storage etc., he cannot carry out
such expensive (O(nρ)(2 < ρ ≤ 3)) computation locally.
Thus, the customer resorts to cloud server (CS) for
solving the LE computation and leverages its computa-
tion power in a pay-per-use manner. Instead of directly
sending original problem Φ, the customer first uses a
secret key K to map Φ into some encrypted version
ΦK . Then, based on ΦK , the customer starts the com-
putation outsourcing protocol with CS, and harnesses
the powerful resources of cloud in a privacy-preserving
manner. The CS is expected to help the customer finding
the answer of ΦK , but supposed to learn as little as
possible on the sensitive information contained in Φ.
After receiving the solution of encrypted problem ΦK ,
the customer should be able to first verify the answer. If
it’s correct, he then uses the secret K to map the output
into the desired answer for the original problem Φ.

As later we shall see in the proposed model, the
customer still needs to perform a one-time setup phase
of encrypting the coefficient matrix with relatively costly
O(n2) computation.1 But it is important to stress that this
process can be performed under a trusted environment
where the weak customer with no sufficient computa-
tional power outsources it to a trusted party. (Similar
treatments have been utilized in [20]). The motivating ex-
ample can be a military application where the customer
has this one-time encryption process executed inside
the military base by a trusted server, and then goes off
into the field with access only to untrusted CS. Another

1. Since the encryption on each element of the matrix coefficient are
independent, the whole one-time operation can be easily parallelized
by using multithreading technique on the modern multi-core systems.
For example, enabling double threading on a six core system could
easily speedup the operation efficiency with a factor of 12.

example can be the customer has the system modeling
coefficient matrix A encrypted on his company’s work-
station, and then uses his portable device outside while
still hoping to make timely decisions (derive solutions
xi) based on different observation bi in the field, for
i = 1, 2, . . . , s. (Further discussion on amortization of
such one-time cost is given in Section 6.2.) Thus, to make
the rest of the paper easier to catch, we assume that CS is
already in possession of the encrypted coefficient matrix,
and the customer who knows the decryption key hopes
to securely harness the cloud for on-demand computing
outsourcing needs, i.e., solving LE problems {Ax = bi}.

The security threats faced by the computation model
primarily come from the malicious behavior of CS,
which may behave beyond “honest-but-curious” model
as assumed by some previous works on cloud data
security (e.g., [21]–[23]). It is either because CS intends
to do so or because it can be attacked/compromised. In
addition to be persistently interested in analyzing the
encrypted input sent by the customer and the encrypted
output produced by the computation to learn the sen-
sitive information, CS can also behave unfaithfully or
intentionally sabotage the computation, e.g. to lie about
the result to save the computing resources, while hoping
not to be caught at the same time.

Finally we assume the communication channels be-
tween cloud server and the customer is authenticated
and reliable, which can be achieved in practice with little
overhead.

2.2 Design Goals

To enable secure and practical outsourcing of LE un-
der the aforementioned model, our mechanism design
should achieve the following security and performance
guarantees.
• Input/output Privacy: No sensitive information

from the customer’s private data can be derived by
the cloud server during performing the LE compu-
tation.

• Robust Cheating Detection: Output from faithful
cloud server must be decrypted and verified suc-
cessfully by the customer. No output from cheating
cloud server can pass the verification by the cus-
tomer with non-negligible probability.

• Efficiency: The local computation done by the cus-
tomer should be substantially less than solving the
original LE on his own. Here the computation bur-
den is measured in terms of both time cost and
memory requirements.

2.3 Preliminaries and Notations

2.3.1 Iterative Method
In many engineering computing and industrial applica-
tions, iterative method has been widely used in practice
for solving large-scale systems of LE [8], and sometimes
is the mandatory choice [17] over direct method due to
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its ease of implementation and relatively less compu-
tational power consumption, including the memory and
storage IO requirement [10]. We now review some basics
on the general form of stationary iterative methods for
solving LE problems. A system of linear equations can
be written as

Ax = b, (1)

where x is the n× 1 vector of unknowns, A is an n× n
(non-singular) coefficient matrix and b is an n× 1 right-
hand side vector (so called constant terms). Most itera-
tive methods involve passing from one iteration to the
next by modifying a few components of some approxi-
mate vector solution at a time until the required accuracy
is obtained. Without loss of generality, we focus on Jacobi
iteration [17] here and throughout the paper presentation
for its simplicity. Though extensions to other stationary
iterative methods can be straightforward, we don’t study
them in the current work.

We begin with the decomposition: A = D + R, where
D is the diagonal component, and R is the re-
maining matrix. Then the Eq. (1) can be written
as Ax = (D + R)x = b, and finally reorganized as:
x = −D−1 ·R · x + D−1 · b. According to the Jacobi
method, we can use an iterative technique to solve
the left hand side of this expression for x(k+1), using
previous value for x(k) on the right hand side. If we de-
note T = −D−1 ·R and c = D−1 · b, the above iterative
equations can be simply represented as

x(k+1) = T · x(k) + c. (2)

The convergence is not always guaranteed for all matri-
ces, but it is the case for a large body of LE problems
derived from many real world applications [17].

2.3.2 Homomorphic Encryption

Our construction utilizes an efficient semantically-secure
encryption scheme with additive homomorphic prop-
erty. Given two integers x1 and x2, we have Enc(x1 +
x2) = Enc(x1)∗Enc(x2), and also Enc(x1∗x2) = Enc(x1)x2 .
In our implementation we adopt the one presented by
Paillier in [18]. The Paillier cryptosystem is a public
key cryptosystem. Similar to RSA, the public key is N ,
which is the product of two large primes p and q. The
plaintext space is ZN , while ciphertexts are represented
as elements of group Z∗N2 . The encryption of message
x ∈ ZN is done by randomly choosing r ∈ Z∗N2 and
computing Enc(x) = gx · rN mod N2, where g is an
element from Z∗N2 with order multiple of N .

For a vector x = (x1, x2, . . . , xn)T ∈ (ZN )n, we use
Enc(x) to denote the coordinate-wise encryption of x:
Enc(x) = (Enc(x1),Enc(x2), . . . ,Enc(xn))T . Similarly, for
some n × n matrix T, where each of the component
T[i, j] in T is from ZN , we denote the component-wise
encryption of T as Enc(T), and we have Enc(T)[i, j] =
Enc(T[i, j]).

3 THE FRAMEWORK AND BASIC SOLUTIONS

In the Introduction we motivated the need for securely
harnessing the cloud for solving large-scale LE prob-
lems. In this section, we start from the framework for
our proposed mechanism design, and provide a basic
outsourcing solution based on direct method. The basic
solution fulfills the input/output privacy defined in
Section 2.2, but does not meet the efficiency requirement.
The analysis of this basic solution gives insights and
motivations on our main mechanism design based on
iterative methods.

3.1 The General Frameworks
To make the following presentation easier to follow, we
first give the general high level description of the frame-
work of the proposed mechanism, which consists of
three phases: (ProbTransform, ProbSolve, ResultVerify).
• ProbTransform. In this phase, cloud customer would

initialize a randomized key generation algorithm and
prepare the LE problem into some encrypted form ΦK
via key K for phase ProbSolve. Transformation and/or
encryption operations will be needed when necessary.

• ProbSolve. In this phase, cloud customer would use
the encrypted form ΦK of LE to start the computation
outsourcing process. In case of using iterative methods,
the protocol ends when the solution within the required
accuracy is found.

• ResultVerify. In this phase, the cloud customer would
verify the encrypted result produced from cloud server,
using the randomized secret key K. A correct output x
to the problem is produced by decrypting the encrypted
output. When the validation fails, the customer outputs
⊥, indicating the cloud server was cheating.

Note that the proposed framework suits for secure
outsourcing mechanisms based on both direct method
and iterative method. In the following, we first give a
basic direct method based mechanism design.

3.2 Basic Direct Method based Mechanisms
We study in this subsection a straight-forward approach
for encrypting the problem for direct solvers, and show
that the local computation cost based on these techniques
along may result in an unsatisfactory mechanism from
the efficiency gain perspective.

Specifically, in the ProbTransform phase, the customer
picks a random vector r ∈ Rn as his secret keying mate-
rial. Then he rewrites Eq. (1) as A(x + r) = b + Ar. Let
y = x + r and b′ = b + Ar, we have Ay = b′. To hide
the coefficient matrix A, the customer would select a
random invertible matrix Q that has the same dimension
as A. Left-multiplying Q to both sides of Ay = b′ would
give us

A′y = b′′, (3)

where A′ = QA and b′′ = Q(b + Ar). Clearly, as Q and
r are chosen randomly and kept as secret, cloud has no
way to know (A,b,x), except the dimension of x.
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The customer can then start the ProbSolve phase by
outsourcing ΦK = (A′,b′′) to the cloud, who solves ΦK
and sends back answer y. Once the correctness of y is
verified, the customer can derive x via x = y − r for the
original problem Φ = (A,b).
Remark. While faithfully achieving the input/output
privacy, the above approach is not attractive for the fol-
lowing two reasons: 1) The local problem transformation
cost for matrix multiplication QA is O(n3), which is
comparable to the cost of solving Ax = b [25]. Consid-
ering the extra cost of ResultVerify, the discussion of
which we intentionally defer to a later Section 5, there
is no guaranteed computational saving for the customer
in this basic mechanism. 2) The local cubic time cost can
become prohibitively expensive when n goes large to the
orders of hundreds of thousand. Besides, it violates our
assumption in Section 2 that the customer cannot carry
out expensive O(nρ)(2 < ρ ≤ 3) computation locally.

In the recent literature, Atallah et al. has proposed
work for secure outsourcing matrix multiplication using
only O(n2) local complexity. However, in practice those
work can hardly be applied to our case of calculating
Q ·A for Eq. (3), especially for large n. The reason
is that in their work, either non-collusion servers are
required [26] or scalar operations are expanded to poly-
nomials and thus incur huge communication and com-
putation overhead [27]. Both assumptions are difficult
to be met in practice. (See detailed discussion on this at
Section 8).

4 THE PROPOSED SOLUTION

The above observation and discussion shows that direct
method based approach might not be a good option
for resource-limited customers for secure outsourcing
large-scale LE with computational savings in mind. This
motivates us to design secure outsourcing mechanism
using iterative method. To better facilitate the iterative
method based mechanism design to be explored later, we
first make some general but non-stringent assumptions
about the system as follows: 1) we assume the system
coefficient matrix A is a strictly diagonally dominant
matrix2. It helps ensure the non-singularity of A and the
convergence of the iterative method that is to be detailed
later. Note that this is not a stringent requirement, as
many real-world formulated LE problems satisfy this
assumption, such as the statistical calculations [24], or
the radar cross-section calculations [8] etc. 2) Although
proper preconditioning techniques (e.g. see [7]–[10], [17]
for details) on the coefficient matrix A can significantly
improve the performance of any iterative method, we
do not study the cost of these techniques in this paper.
As we focus on the security design only, we assume
the coefficient matrix A already ensures fast enough
convergence behavior, i.e., the number of iterations L�
n. 3) We assume the matrix A is first transformed to

2. We focus on general dense matrices in this paper.

Algorithm 1: Problem Transformation Phase
Data: original problem Φ = (A,b)
Result: transformed problem as shown in Eq. (5)
begin

1 pick random r ∈ Rn;
2 compute b′ = b + Ar, and c′ = D−1 · b′;
3 replace tuple (x, c) in Eq. (2) with (y = x + r, c′);

return transformed problem as Eq. (5);

T = D−1 ·R, where A = D + R as in Eq. (2), and
then stored in cloud in its encrypted form Enc(T) via
homomorphic encryption introduced in Section 2.3.2. As
stated in our system model, this one-time setup phase is
done before ProbTransform phase by some trusted work-
station under different application scenarios. Hereinafter,
we may interchangeably use the two forms of coefficient
matrix A or T without further notice.

For ease of presentation, we consider a semi-honest
cloud server here, and defer the mechanisms of cheating
detection to a later section.

4.1 Problem Transformation
The customer who has coefficient vector b and seeks
solution x satisfying Ax = b cannot directly starts the
ProbSolve with cloud, since such interaction may expose
the private information on final result x. Thus, we still
need a transformation technique to allow customer to
properly hide such information first. Similar to the basic
mechanism in Section 3.2, in the ProbTransform phase,
the customer picks a random vector r ∈ Rn as his secret
keying material, and rewrites Eq. (1) as the new LE
problem

Ay = b′, (4)

where y = x + r and b′ = b + Ar. Clearly, as long as
the relationship x = y − r holds, then for any solution
x satisfying Eq. (1), we can find a solution y satisfying
the Eq. (4), and vice versa. Thus, the solution x to Eq. (1)
can be found by solving a transformed LE problem in
Eq. (4). At this point, both the output x and input tuple
b have been perfectly hidden via random vector r. Since
our goal is to start the iterative process with the cloud
for solving LE, we can reformulate Eq. (4) into the more
convenient iterative form as Eq. (2), which we rewrite as
follows:

y(k+1) = T · y(k) + c′, (5)

where T = −D−1 ·R, c′ = D−1 · b′, and A = D + R.
As a result, the problem input Φ = (A,b) that needs

to be protected is changed to tuple ΦK = (T, c′), where
T has already been encrypted and stored as Enc(T)
at cloud, and c′ is just a randomly masked version of
b via random n × 1 vector r. The problem output x
is also masked to y = x + r. Now we are ready for
the next phase of ProbSolve. The whole procedure of
ProbTransform is summarized in Algorithm 1.
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Remark. This problem transformation on the local cus-
tomer side only requires two matrix-vector multiplica-
tions: one for b′ = b + Ar and one for c′ = D−1 · b′.
When n goes large, expensive IO cost at customer device
could downgrade the performance of such operations.
However, as soon we shall see, such one-time problem
transformation cost can be easily amortized throughout
the overall efficient iterative algorithm executions, espe-
cially when we deal with honest but curious adversaries.
It is also worth noting that this transformation does not
need to modify the matrix of A (or T), which gives us
advantage of reusing. Specifically, the customers with
different constant terms bi can utilize this transformation
technique by choosing a different r and then harness the
cloud for solving different LE problems {Ax = bi}, as
seen in Section 6.2.

4.2 The Iterative Problem Solving
After the problem transformation step, now we are ready
to describe the phase of ProbSolve. The purpose of
our protocol is to let the customer securely harness
the cloud for the most expensive computation, i.e., the
matrix-vector multiplication T · y(k) in Eq. (5) for each
algorithm iteration, k = 1, 2, . . . , L. We show how it can
be realized with the help of the additive homomorphic
encryption introduced in Section 2.3.2. Since it is an
iterative computing process, we only describe the very
first round of the process as follows. We leave the
convergence analysis and other input/output privacy
guarantee in later subsections. For ease of presentation,
in what follows we assume without loss of generality
that our main protocol of solving LE works over integers.
All arithmetic is modular with respect to the modulus
N of the homomorphic encryption, and the modulus is
large enough to contain the answer. The reason why
this is a reasonable assumption and how our designs
handle noninteger real numbers is given in more detail
in Section 6 of practical considerations.
1) For the very first iteration, the customer starts the
initial guess on the vector y(0) = (y

(0)
1 , y

(0)
2 , . . . , y

(0)
n )T ,

and then sends it to the cloud.
2) The cloud server, in possession of the encrypted
matrix Enc(T), computes the value Enc(T · y(0)) by using
the homomorphic property of the encryption:

Enc(T · y(0))[i] = Enc(
n∑
j=1

T[i, j] · y(0)
j )

=

n∏
j=1

Enc(T[i, j])y
(0)
j , (6)

for i = 1, . . . , n, and sends Enc(T · y(0)) to customer.
3) After receiving Enc(T · y(0)), the customer decrypts
and gets T · y(0) using his private key. He then updates
the next approximation y(1) = T · y(0) + c′ via Eq. (5).

For the k-th iteration, it follows similarly that the
customer provides the k-th approximation of y(k) to the

Algorithm 2: Iterative Problem Solving Phase
Data: transformed problem with input c′ and

Enc(T)
Result: solution x to the original problem

Φ = (A,b)
% L: maximum number of iterations to be
performed;
% ε: measurement of convergence point;
begin

1 Customer picks y(0) ∈ (ZN )n;
for (k ← 0 to L) do

2 Customer sends y(k) to cloud;
3 Cloud computes Enc(Ty(k)) via Eq. (6);
4 Customer decrypts Ty(k) via his private key;

if ||y(k) − y(k+1)|| ≤ ε then
5 break with convergence point y(k+1);

6 return x = y(k+1) − r;

cloud, k = 1, 2, . . . , L. The cloud computes Enc(T · y(k))
for the customer for the next update of y(k+1). The
protocol execution continues until the result converges,
as shown in Algorithm 2.
Remark. For the k-th iteration, the dominant customer’s
local computation overhead is only to decrypt the vector
of Enc(T · y(k)), which takes O(n) complexity, and in
general does not require expensive IO cost, as demon-
strated in our experiment in Section 7. This is less than
the O(n2) cost demanded by the matrix-vector multi-
plication T · y(k) of Eq. (5) in terms of both time and
memory requirements. Note that the decryption com-
putation is generally quite expensive compared to the
floating point arithmetic operation. Thus, the theoretical
computation efficiency gain (in terms of both time and
memory requirements) can only be exhibited when the
problem size n goes very large. However, this is not
a problem in our case, since we are specifically using
iterative methods to securely solve large-scale LE. Later
in Section 7, we will show some performance results and
discuss the possible selections of deciding the proper
size n for the proposed problem. Also note that the
communication overhead between the customer and the
cloud is only two vectors of size n for each iteration,
which is reasonably efficient.

4.3 Convergence Analysis
When dealing with iterative methods, it is a must to
determine whether and when the iteration will converge.
Here we utilize the general convergence result from [17]:
For LE problem Ax = b, if A is a strictly diagonally
dominant or an irreducibly diagonally dominant matrix,
then the associated Jacobi iterations converge for any
initial guess of x0.

Since in our model the coefficient matrix A is readily
diagonally dominant, to determine whether to terminate
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the ProbSolve phase, the customer only needs to test if

||y(k) − y(k+1)|| ≤ ε, (7)

for some small enough ε > 0. And the termination point
y(k+1) will help get the final result x via x = y(k+1) − r.
The local computation cost for each iteration is still O(n).

4.4 Input/output Privacy Analysis
4.4.1 Output Privacy Analysis
From above protocol instantiation, we can see that
throughout the whole process, the cloud server only
sees the plaintext of y(k), the encrypted version of ma-
trix Enc(T), and encrypted vectors Enc(T · y(k)), k =
1, 2, . . . , L. Since y is a blinded version of original so-
lution x, it is safe to send y to the cloud in plaintext. No
information of x would be leaked as long as r is kept
secret by the customer.

4.4.2 Input Privacy Analysis
While the output is protected perfectly, it is worth noting
that some knowledge about the input tuple Φk = (T, c′)
could be implicitly leaked through the protocol exe-
cution itself. The reason is as follows: for each two
consecutive iterations of the protocol, namely, the k-th
and the (k + 1)-th, the cloud server sees actually the
plaintext of both y(k) and y(k+1). Thus, a “clever” cloud
server could initiate a system of linear equations via Eq.
(5) and attempts to learn the unknown components of
T and c′. More specifically, for the total L iterations,
the cloud server could establish a series of (L − 1) × n
equations from y(k), k = 0, 1, . . . , L−1,3 while hoping to
solve n2 + n unknowns of T and c′.

However, as we have assumed in Section 3.1 that var-
ious preconditioning techniques can ensure fast enough
convergence behavior, we have the number of iterations
L� n. (In fact, if L is close or even larger than n, there
would be no advantage of using iterative method over
direct method at all.) As a result, from the (L − 1) × n
equations, the n2 + n components of T and c is largely
underdetermined and cannot be exactly determined by
any means. Thus, as long as the cloud server has no
previous knowledge of the coefficient matrix A, we state
that such bounded information leakage from (L− 1)×n
equations can be negligible, especially when the size of
problem n goes very large.

In fact, we can further enhance the guarantee of input
privacy by introducing a random scaling factor ak ∈ ZN
for each iteration to break the linkability of two con-
secutive iterations of the protocol. Specifically, instead
of sending y(k) directly to the cloud server for the k-th
iteration, the customer sends ak · y(k) for each iteration
of the ProbSolve. When the cloud server sends back the
encrypted value Enc(ak ·Ty(k)), the customer just simply
decrypts the vector of ak ·Ty(k+1), divides each compo-
nent with ak, and then updates the next approximation

3. Note that y(L) as the final answer is not transmitted to the cloud
server.

y(k+1) via Eq. (5). Similarly, for the next iteration another
random scaling factor ak+1 is multiplied to y(k+1) before
sent to the cloud server.
Remark. With the random scaling factor ak, it is not
possible to derive the original value y(k) via aky

(k).
Thus, the cloud server can no longer directly establish
linear equations from received aky

(k) and ak+1y
(k+1),

but a series of non-linear equations with extra random
unknowns a1, a2, . . . , aL. We should note that while this
method further enhances the guarantee of input privacy
by bringing extra randomness and nonlinearity of the
system equations, it does not incurs any expensive op-
eration, making the customer’s local computation cost
still O(n) within each iteration.

5 CHEATING DETECTION

Till now, the proposed protocol works only under the
assumption of honest but curious cloud server. However,
such semi-trusted model is not strong enough to capture
the adversary behaviors in the real world. In many cases,
an unfaithful cloud server in reality could sabotage the
protocol execution by either being lazy or intentionally
corrupting the computation result, while hoping not to
be detected. In the following, we propose to design
result verification methods to handle these two malicious
behaviors. Our goal is to verify the correctness of the
solution by using as few as possible expensive matrix-
vector multiplication operations.

For easy notation purposes, we denote z(k) = T · y(k)

as the expected correct responses from cloud server, and
ẑ(k) = T · ŷ(k) as the actual received value from cloud
server, where k = 1, 2, . . . ,L. Here we also assume L ≤
L, meaning the ResultVerify phase is initiated within at
most L iterations.

5.1 Dealing with Lazy Adversary
We first consider detecting the laziness of cloud server.
Since computing the addition and multiplication over
encrypted domain could cost a lot of computational
power, the cloud server might not be willing to com-
mit service-level-agreed computing resources in order
to save cost. More severely, for the k-th iteration, the
adversary could simply reply the result z(k−1) of the
previous (k − 1)-th iteration without computation.

As a result, the customer who uses z(k−1) to update
for the next y(k+1) will get the result y(k+1) = y(k).
Consequently, he may be incorrectly led to believe the
solution of equation Ay = b′ is found. Thus, for the
malicious adversary, only checking the Eq. (7) is not
sufficient to convince the customer that the solution has
converged. According to Eq. (4) one further step has to
be executed as

||Ay(k+1) − b′|| ≤ ε. (8)

Remark This checking equation incurs the local cost
of O(n2) for customer. While potentially expensive for
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large size of n, we should note that it does not have
to be executed within every iteration. It only needs to
be tested after the test on y(k) and y(k+1) via Eq. (7) is
passed. If Eq. (7) is not passed, it means y(k+1) is not the
convergence point yet. On the other hand, if Eq. (7) is
successfully passed, we can then initiate the test of Eq.
(8). If Eq. (8) holds, we say the final solution is found,
which is x = y(k+1) − r. If it doesn’t, we can tell that
the cloud server is cheating (being lazy). In either case,
this matrix-vector multiplication of Eq. (8) only needs
to be executed at most once throughout the protocol
execution.

5.2 Dealing with Truly Malicious Adversary

While a lazy adversary only sends previous result as the
current one, a truly malicious adversary can sabotage the
whole protocol execution by returning arbitrary answers.
For example, the malicious cloud server could compute
Eq. (6) via arbitrary vectors ŷ(k) other than customer’s
y(k). In the worst case, it would make the protocol
never converge, wasting the resources of the customer.
Thus, we must design an efficient and effective method
to detect such malicious behavior, so as to ensure the
result quality. The straightforward way would be to redo
the matrix-vector multiplication T · y(k) and check if it
equals to the received ẑ(k) for each iteration k. This
is not appealing since it consumes equivalent amount
of resources in comparison to that of computing the
results directly. Below we utilize the algebraic property
of matrix-vector multiplication and design a method to
test the correctness of all received answers ẑ(k) = T·ŷ(k),
k = 1, 2, . . . ,L in only one batch, i.e., using only one
matrix-vector multiplication.

Suppose after L iterations, the solution still does not
converge. The customer can initiate a ResultVerify phase
by randomly selecting L numbers, α1, α2, . . . , αL from
B ⊂ ZN , where each αk is of l-bit length and l < logN .
He then computes the linear combination θ over the
y(k)’s, which he has provided in the previous k itera-
tions, k = 1, 2, . . . ,L: θ =

∑L
k=1 αk · y(k). Next, to test

the correctness of all the intermediate results, {ẑ(k) =
T · ŷ(k)}, k = 1, 2, . . . ,L, received from cloud server, the
customer simply checks if the following equation holds:

T · θ ?
=

L∑
k=1

αk · ẑ(k). (9)

The above equation can be elaborated as follows:

T · θ = T ·
L∑
k=1

αk · y(k)

=

L∑
k=1

αk ·T · y(k) =

L∑
k=1

αk · ẑ(k).

Since each αk is chosen randomly from B = {0, 1}l ⊂
ZN , we have the following theorem capturing the

correctness and soundness of the cheating detection
method:

Theorem 1: The result verification Eq. (9) holds if and
only if ẑ(k) = T · y(k) for all k = 1, 2, . . . ,L, with error
probability at most 2−l.

Proof: It is straightforward that the Eq. (9) always
holds when the received values of each iteration are
computed correctly. We now prove the soundness. Let
ẑ(1), ẑ(2), . . . , ẑ(L) denote the actual received results from
cloud server, among which there exist some unfaithfully
computed results. And let z(1), z(2), . . . , z(L) denote the
correct result of the matrix-vector multiplication of exe-
cuted iteration.

Since the results are incorrect, there exist at least some
k such that ẑ(k) 6= z(k), for k = 1, 2, . . . ,L. This inequality
also indicates that at least one of the n components of
vector ẑ(k) and z(k) is not equal to each other. Without
loss of generality, we assume ẑ(k)[1] 6= z(k)[1].

Now suppose the test Eq. (9) accepts the incorrect
results on a particular choice of α1, α2, . . . , αL. From the
correctness of Eq. (9) we must have

L∑
k=1

αk · ẑ(k) =

L∑
k=1

αk · z(k) (10)

Consider the 1st row of this vector equation, we have

L∑
k=1

αk · ẑ(k)[1] =

L∑
k=1

αk · z(k)[1] (11)

Since ẑ(k)[1] 6= z(k)[1], we can rearrange the above
equation as

α1 = −(z(k)[1]− ẑ(k)[1])−1 · (
L∑
k=2

αk · (z(k)[1]− ẑ(k)[1])) (12)

This means for any fixed choice of α2, α3, . . . , αL, there
is exactly one choice of α1 ∈ B = {0, 1}l ⊂ ZN
(from Eq. (12)) such that Eq. (11) is true. Thus, if we
fix α2, α3, . . . , αL and draw α1 randomly from B, the
probability that Eq. (11) holds is 2−l. The same is also
true if we draw α1, α2, . . . , αL independently at random.
Note that we only consider the case where one of the n
components of vector ẑ(k) and z(k) is not equal to each
other. In case there are λ > 1 components are different,
the probability that eq. (11) holds would be 2−λ·l < 2−l.
Therefore, the test eq. (9) holds for unfaithful results is
at most 2−l.

Finally, we remark that some of our probability argu-
ment from Eq. (12) is inspired by Bellare’s analysis of
their fast batch verification for modular exponentiation
and digital signature schemes [28].

Remark. It is easy to tell that the computation overhead
of Eq. (9) is only bounded by one matrix-vector mul-
tiplication of the left-hand-side of the equation (recall
L ≤ L� n). The size of l is a tradeoff between efficiency
and security. While a conservative choice of high security
should probably require l around 80 bit, for a fast check
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a reasonable choice of 20 bits of l is also acceptable [29].
Note that in practice this result verification does not
need to happen very frequently, because the property
of batch verification ensures the quality of all previous
received values {ẑ(k) = T · ŷ(k)}, k = 1, 2, . . . ,L. Thus
the customer can preset the threshold L as sufficiently
large such that either he detects the unfaithful behavior
of cloud server or the program will converge soon after
L iterations. In the best case, Eq. (9) only needs to be
instantiated once. Combined with Eq. (8), we can see
that our method for cheating detection indeed achieves
as few as possible expensive matrix-vector multiplication
operation. As a result, the overall design asymptotically
eliminates the expensive IO cost on customer throughout
the successive approximation process for seeking the
solution as well as result verification.

6 PRACTICAL CONSIDERATIONS
In the previous section, we assumed that the proposed
protocol works well over integer values. Now we discuss
these practical issues on how to adapt our proposed
solution to work over non-integer and even negative
values, and justify that our solution is a reasonable one.
In addition, we will also describe some specific appli-
cation scenarios of our proposed mechanism where we
can amortize the one-time O(n2) setup cost by reusing
the coefficient matrix A. Finally, we show the utilization
of cost associativity of cloud computing can actually
help us save much of protocol running time during the
implementation on cloud. These discussions also give us
insights of designing our experiments on the real cloud
platform in the next section.

6.1 Dealing with Non-Integer Numbers
Remember in the Paillier cryptosystem, the message
space is ZN : {0, 1, . . . , N − 1}. Thus, we have to deal
with issues of both negative numbers and real numbers
in order to use the primitive correctly. We begin with
the handling of negative numbers. Since the homomor-
phic property of Paillier cryptosystem is over modulo
arithmetic, we can shift the negative numbers to the
interval of {(N − 1)/2 + 1, . . . , N − 1}, with −1 = N − 1
mod N , while keeping non-negative numbers in the
interval of {0, 1, . . . , (N − 1)/2}. When the decrypted
value yi > N/2, we shift yi back to the result yi − N .
By doing so we limit the value of input to the interval
of (−N/2, (N −1)/2]. But since N is of 1024 bit length, it
ensures the interval is large enough for accommodating
all the computation to be performed in our scheme.

As for the real value y ∈ Rn, or yi ∈ R, we can
introduce some scaling factor (e.g., the multipliers of 10)
to first scale up the value into integer value. Then after
the protocol execution, we can scale the result back to the
original value by removing the scaling factor.4 More for-
mally speaking, let 1/q be the selected multiplier, where

4. In the literature, using scaling factors to handle non-integer values
is not new. We acknowledge that similar treatment can be found in
many previous work, e.g., [30]–[32], to list a few.

q is some small enough quantization factor. Then we can
approximate the value of yi ∈ R as ȳi = byi/qc ∈ ZN .
This may results in some accuracy problem. But if we
select sufficiently thin quantization factor like q = 10−3,
it may lose little accuracy. Obviously, the additive ho-
momorphic property of Paillier encryption scheme still
holds, since

Dec(Enc(ȳ1) · Enc(ȳ2)) = ȳ1 + ȳ2 =
y1 + y2

q
. (13)

This allows cloud to perform an arbitrarily number of
sums among ciphertext without worrying the rounding
errors. Also, the property of plaintext multiplication also
holds, since

Dec(Enc(ȳ1)ȳ2) = ȳ1 · ȳ2 =
y1 · y2

q2
. (14)

Here the presence of factor q2 from Eq. (14) indi-
cates that the size of the encrypted value would grow
exponentially with the number of multiplications over
plaintext. However, this is not an issue in our scheme,
because the computation of Eq. (6) in the ProbSolve
phase only needs one-time multiplication between each
scaled value pair T[i, j] and ȳ

(k)
j for j = 1, 2, . . . , n.

Consequently, after the customer decrypts the result
T · y(k) of Eq. (6), the compensation factor for the final
real value of each component would be q2 (but not q).

6.2 Application over a Series of Equations
{Ax = bi}

Lots of real world engineering computing problems can
be formulated directly or indirectly as systems of linear
equations. Moreover, many of these problems would not
only demand the solution of a single system of linear
equations Ax = b, but also require to solve a matrix
equation multiple times for blocks of right-hand-side
constant terms b1,b2, . . . ,bs. (See Chapter 1.4 from [10]
and references therein for such example applications of
large dense system of LE on electromagnetic problems
and others.) Our proposed mechanism can be applied
to these problem scenarios and explore the flexibility in
reusing encrypted matrix Enc(T) in Eq. (5), which not
only amortizes the one-time cost on trusted workstation
for encrypting the coefficient matrix by a factor of s, but
also increases the usability of the proposed mechanism.

However, the encrypted matrix cannot be reused in
unlimited times, since it would give cloud server ac-
cumulated information to establish matrix equations to
solve for T. (see Section 4.4). Thus, for security pur-
poses, the number s of reuse should never exceeds
bn/L̃c, where L̃ denotes the expected maximum number
of iterations for solving one matrix equation Ax = bi,
i = 1, 2, . . . , s. In this way, we can ensure the group
of equations on matrix T is always underdetermined
(and thus have unlimited solutions) and guarantees the
acceptable input privacy.
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6.3 Utilizing the Cost Associativity of Cloud Com-
puting

To better utilize the benefits of cloud, we propose to
explore the famous “cost associativity” of cloud com-
puting, which was first suggested by [33], to speedup
the cloud sides computation, i.e., the Eq. (6) in our
scheme. Cost associativity states that using 1000 EC2
instances [19] in the cloud for 1 hour costs the same as
using 1 instances for 1000 hours. This gives us advantage
to parallelize the computation of Eq. (6), which can be
decomposed into subtasks running simultaneously on
multiple available EC2 instances.

Specifically, when we implement our scheme, we can
first separate the encrypted matrix Enc(T) into t sub-
matrices, each formed by n/t rows out of the n rows
of Enc(T). (we assume n can be divided exactly by t
here). Then instead of sending Enc(T) to a single EC2
instance, we send each submatrix of Enc(T) to t different
EC2 instances in the cloud. When doing the computation
of Eq. (6) for the k-th iteration, the customer can send
y(k) to this cluster of t EC2 instances and instruct each
of them to compute only partial result based on its
possessed submatrix, which would be a subvector with
n/t components. After collecting all the subvectors, the
customer simply decrypts and merges them to get the
result of T · y(k). In general, initiating t EC2 instances
in the cloud allows us to reduce the overall cloud side
computation time to 1/t, with no extra cost to customers.
This will be validated in our experiment in the next
section.

7 PERFORMANCE ANALYSIS

We implement our mechanisms using C language. Al-
gorithms utilize the GNU Scientific Library, the GNU
Multiple Precision Arithmetic Library, and the Paillier
Library with modulus N of size 1024 bit. The customer
side process is conducted on a laptop with Intel Core
2 Duo processor running at 2.16 GHz, 1 GB RAM,
and a 5400 RPM Western Digital 250 GB Serial ATA
drive with an 8MB buffer. The cloud side process is
conducted on Amazon Elastic Computing Cloud (EC2)
with High-Memory instance type [19]. The scaling fac-
tor for real numbers is set to be 103. Our randomly
generated diagonally-dominant test benchmark focuses
on the large-scale problems only, where n ranges from
5,000 to 50,000. The solutions are all converged within 50
iterations. Since the computation dominates the running
time as evidenced by our experiment, we ignore the
communication latency between the customer and the
cloud for this application. All results represent the mean
of 10 trials. In order to handle large-scale matrix-vector
operations, proper matrix splitting approaches are to be
used, which also demonstrates how the IO cost could
significantly downgrade the performance if the whole
computation is solely performed on the customer’s local
machine.

TABLE 1: Transformation cost for different size of prob-
lems.

Benchmark ProbTransform cost
# dimension storage size transformation time
1 n = 5,000 200 MB 7.35 sec
2 n = 8,000 512 MB 28.17 sec
3 n = 1,0000 800 MB 47.61 sec
4 n = 20,000 3.2 GB less than 4 mins
5 n = 30,000 7.2 GB less than 7 mins
6 n = 40,000 12.8 GB less than 13 mins
7 n = 50,000 20 GB less than 23 mins

7.1 Problem Transformation Cost

We first summarize the cost for customer performing
ProbTransform. As shown in Section 4.1, the transfor-
mation cost is dominated by the two matrix-vector
multiplication in Eq. (5). Note that when n goes large,
the resulted matrix would be too large to be hold in
customer’s local machine memory. Thus, the matrix-
vector multiplication cannot be performed in one step.
Instead, the matrix has to be split into multiple subma-
trices, and each time only a submatrix can be loaded
in the memory for computing a portion of the final
result. In our experiment with 1 GB RAM laptop, we
split the matrix into submatrices with 200 MB each for
easy in-memory operation. The time results for different
problem sizes are shown in Table 1. For the largest
benchmark size n = 50, 000, the problem transformation
only costs around 22 minutes on our laptop. Compared
to the baseline experiment where the customer solves
the equation by himself (shown in the next section), such
computational burden should be considered practically
acceptable and it can be easily amortized throughout the
overall iterative algorithm executions.

7.2 Local Computation Comparison for Problem
Solving

In our protocol by harnessing the computation power of
cloud, the dominant operation in each iteration for cus-
tomer is only to perform n decryptions. If the customer
solves the problem by himself, which is the baseline
of our comparison, the dominant computation burden
within each iteration would be the matrix-vector mul-
tiplication with the input size n2. We compare the two
computation cost in table 2, where both timing results
and estimated memory consumption for each single
algorithm iteration are reported. To better present the
trend of the efficiency gain between the two experiments,
the timing comparison results are also plotted in Fig. 2.

To have a fair comparison, again we have to consider
the memory requirements incurred by the two operation.
In particular, when n goes large, the IO time has to be
taken into consideration. Similar to the transformation
cost test, in our baseline experiment, each matrix is split
into submatrices with 200 MB each for easy in-memory
arithmetic operation. In this way, when performing the
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Fig. 2: Comparison of customer local computation cost
among baseline and our scheme with different choices
of key length.

matrix-vector multiplication for a 50, 000×50, 000 matrix
with 20 GB space, at least 100 times expensive IO oper-
ations for a 200 MB submatrix have to be performed,
which significantly increases the total time cost in our
baseline experiment, as shown in Fig. 2. On the other
hand, our proposed scheme only demands local n de-
cryption operations, which does not have such high
memory demands. For 1024 bit key, holding the 50, 000×
1 encrypted vector only needs 50, 000× 256Bytes < 13.0
MB memory, which can be easily satisfied by modern
portable computing devices. Thus, the total local com-
putation cost simply goes linearly with the problem size
n. For completeness, we also conduct the experiment
with reduced key length of the Paillier cryptosystem.
This is motivated by applications where only short term
guarantees of secrecy (the coefficient matrix of A) may
be required. (See short key experiments in [32], [34] for
example.) Thus, if the customer decides a smaller key
length is acceptable, the total timing will be reduced.

We can see that the crossover point occurs around
n = 46, 000 for a 1024 bit key and n = 20, 000 for a
768 bit key in Fig. 2, where the trend of the efficiency
gain among O(n) and O(n2) is also clearly shown. In
case of 768 bit key, when n = 50, 000, the customer’s
local computation cost in the baseline experiment would
be 2.43× more than the proposed scheme. Note that
n = 50, 000 is not an unreasonably large matrix. Many
real world application, e.g. problems from electromag-
netic community, could easily lead to a dense system of
linear equations with more than 200,000 unknowns [10].
Though in this work we didn’t try problem size larger
than 50,000, the better efficiency gain for larger-scale
problems can be easily anticipated (see Table 3) from
the clear trend among O(n) and O(n2) shown in Fig.
2. For example, when n = 500, 000, the anticipated
computational saving for customer can be up to 26. 09×.

7.3 Cloud Computation Cost
The cloud side computation cost for each iterated al-
gorithm execution is given in Table 4. The third and
forth columns lists the cloud computation time when
there is only one instance running. However, as stated
previously in Section 6.3, we can utilize the cost associa-
tivity of cloud computing to speedup the cloud server
computation via task parallelization without introducing
additional cost to customers. Thus, the fifth and the
sixth columns lists the estimated cloud computation time
when multiple t Amazon EC2 instances are running si-
multaneously. By configuring a proper choice of t = 100,
even for the largest size of the problem n = 50, 000, the
cloud side computation can be finished within around
20 minutes for each round. Given the security property
our mechanism has provided, such time cost should be
deemed reasonable in practice.

8 RELATED WORK

8.1 Secure Computation Outsourcing
Recently, a general result of secure computation out-
sourcing has been shown viable in theory [20], which
is based on Yao’s garbled circuits [35] and Gentry’s fully
homomorphic encryption (FHE) scheme [36]. However,
applying this general mechanism to our daily computa-
tions would be far from practical, due to the extremely
high complexity of FHE operation and the pessimistic
circuit sizes that can hardly be handled in practice.
Instead of outsourcing general functions, in the security
community, Atallah et al. explore a list of customized
solutions [26], [27], [37] for securely outsourcing specific
computations. In [37], they give the first investigation of
secure outsourcing of numerical and scientific computa-
tion, including LE. Though a set of problem dependent
disguising techniques are proposed, they explicitly al-
low private information leakage. Besides, the important
case of result verification is not considered. In [26],
Atallah et al. give a protocol design for secure matrix
multiplication outsourcing. The design is built upon
the assumption of two non-colluding servers and thus
vulnerable to colluding attacks. Later on in [27], Atallah
et al. give an improved protocol for secure outsourcing
matrix multiplications based on secret sharing, which
outperforms their previous work [26] in terms of sin-
gle server assumption and computation efficiency. But
the drawback is that due to secret sharing technique,
all scalar operations in original matrix multiplication
are expanded to polynomials, introducing significant
communication overhead. Considering the case of the
result verification, the communication overhead must be
further doubled, due to the introducing of additional
pre-computed “random noise” matrices. In short, these
solutions, although elegant, are still not efficient enough
for immediate practical uses on large-scale problems,
which we aim to address for the secure LE outsourcing
in this paper. Very recently, Wang et al. [38] give the
first study of secure outsourcing of linear programming



12

TABLE 2: Customer computation cost comparison among baseline experiment and the proposed mechanism for
single algorithm iteration. The asymmetric speedup is the ratio of the time cost in the baseline over the time cost
in the proposed scheme, which captures the customer efficiency gain. The entry with “×” indicates the positive
efficiency gain is achieved.

Benchmark Baseline cost The proposed ProbSolving cost Asymmetric Speedup
# dimension storage size time memory time (768-bit) time (1024-bit) memory 768-bit 1024-bit
1 n = 5,000 200 MB 3.68 sec 200 MB 27.46 sec 62.81 sec 1.3 MB 0.13 0.06
2 n = 8,000 512 MB 14.09 sec 200 MB 43.94 sec 98.24 sec 2.0 MB 0.32 0.14
3 n = 10,000 800 MB 23.78 sec 200 MB 54.74 sec 122.72 sec 2.6 MB 0.43 0.19
4 n = 20,000 3.2 GB 113.65 sec 200 MB 115.32 sec 245.81 sec 5.1 MB 0.99 0.46
5 n = 30,000 7.2 GB 212.33 sec 200 MB 163.29 sec 368.12 sec 7.7 MB 1.3 × 0.58
6 n = 40,000 12.8 GB 389.76 sec 200 MB 217.20 sec 491.32 sec 10.2 MB 1.79 × 0.79
7 n = 50,000 20 GB 667.63 sec 200 MB 274.70 sec 612.87 sec 13.0 MB 2.43 × 1.09 ×

TABLE 3: The anticipated cost comparison among baseline experiment and the proposed mechanism for larger-scale
problems where n > 50000. Under current experiment setting, only the estimated timing results for single algorithm
iteration are reported.

Benchmark Baseline The proposed ProbSolving cost Asymmetric Speedup
# size time cost time (768-bit) time (1024-bit) 768-bit key 1024-bit key
1 n = 200,000 3.1 hours 18.2 mins 40.8 mins 10.28 × 4.60 ×
2 n = 500,000 19.8 hours 45.6 mins 1.7 hours 26.09 × 11.65 ×
3 n = 1,000,000 79.7 hours 1.5 hour 3.4 hours 52.44 × 23.41 ×

TABLE 4: Cloud side computation cost for different choices of keys and number of simultaneously running EC2
instances t.

Benchmark Time cost with one instance Estimated time with instances t = 10

# size 768-bit key 1024-bit key 768-bit key 1024-bit key
1 n = 5,000 12 mins 20 mins 1.2 mins 2 mins
2 n = 8,000 30 mins 53 mins 3 mins 5.3 mins
3 n = 10,000 48 mins 1.3 hours 4.8 mins 7.8 mins

Benchmark Time cost with one instance Estimated time with instances t = 100

# size 768-bit key 1024-bit key 768-bit key 1024-bit key
4 n = 20,000 3.2 hours 5.4 hours 1.9 mins 3.2 mins
5 n = 30,000 7.2 hours 12.3 hours 4.3 mins 7.4 mins
6 n = 40,000 12.9 hours 20.7 hours 7.7 mins 12.4 mins
7 n = 50,000 20.2 hours 34.4 hours 12.1 mins 20.6 mins

in cloud computing. Their solution is based on problem
transformation, and has the advantage of bringing cus-
tomer savings without introducing substantial overhead
on cloud. However, those techniques involve cubic-time
computational burden matrix-matrix operations, which
the weak customer in our case is not necessarily able to
handle for large-scale problems.

8.2 Secure Two-party Computation

Securely solving LE has also been studied under the
framework of SMC [35]. As we discussed in Introduc-
tion, work under SMC may not be well-suited for the
computation outsourcing model, primarily because they
generally do not address the computation asymmetry
among different parties. Besides, in SMC no single in-
volved party knows all the problem input information,
making result verification usually a difficult task. But
in our model, we can explicitly exploit the fact that
the customer knows all input information and thus de-

sign efficient batch result verification mechanism. Under
the SMC setting, Cramer and Damgård et al. initiate
the study of secure protocols for solving various lin-
ear algebra problems [11]. Their work is done in the
information theoretic multi-party setting, and focus on
achieving constant round complexity. Later on, some
other theoretical work on this topic have been pro-
posed [12]–[14], each improving the previous results in
terms of different round complexity and communication
complexity, respectively. Readers are referred to [14] for
the detailed comparison. Note that these work are all
developed under the theoretical SMC framework and
may not be directly applied to our settings of computa-
tion outsourcing. Besides, even the most communication
efficient work such as [12], [13] focus only on the direct
method based solution, and thus are not necessarily able
to tackle the large-scale problem that we are handling in
this paper. Du et al. also [16] propose a scheme under
SMC setting for solving LE based on secret sharing.
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But they utilize the heavy oblivious transfer protocol
which could incur large communication and computa-
tion complexity of the two involved parties. Recently,
Troncoso-Pastoriza et al. [15] give the first study on
iterative methods for collaboratively solving systems
of linear equations under the SMC framework, which
is the closest related work that we are aware of in
the literature. However, their work can only support
very limited number iterative algorithm execution and
cannot support reasonably large-scale systems of linear
equations due to the continuing growth of the ciphertext
in each iteration, which is not the case in our design. In
addition to the computation asymmetry issue mentioned
previously, they only consider honest-but-curious model
and thus do not guarantee that the final solution is
correct under the possible presence of truly malicious
adversary.

8.3 Computation Delegating and Cheating Detection
Detecting the unfaithful behaviors for computation out-
sourcing is not an easy task, even without consider-
ation of input/output privacy. Verifiable computation
delegation, where a computationally weak customer
can verify the correctness of the delegated computation
results from a powerful but untrusted server without
investing too much resources, has found great interests
in theoretical computer science community. Some recent
general result can be found in Goldwasser et al. [39]. In
distributed computing and targeting the specific compu-
tation delegation of one-way function inversion, Golle et
al. [40] propose to insert some pre-computed results (im-
ages of “ringers”) along with the computation workload
to defeat untrusted (or lazy) workers. Szada et al. [41]
extend the ringer scheme and propose methods to deal
with cheating detection of other classes of computation
outsourcing, including optimization tasks and Monte
Carlo simulations. In [42], Du. et al. propose a method of
cheating detection for general computation outsourcing
in grid computing. The server is required to provide
a commitment via a Merkle tree based on the results
it computed. The customer can then use the commit-
ment combined with a sampling approach to carry out
the result verification, without re-doing much of the
outsourced work. However, all above schemes allow
server actually see the data and result it is computing
with, which is strictly prohibited in secure computation
outsourcing model for data privacy. Thus, the problem
of result verification essentially becomes more difficult,
when both input/output privacy is demanded. Our
work leverages the algebraic property of matrix-vector
multiplication and effectively integrate the batch result
verification within the mechanism design, introducing
very small amount of extra overhead on the customer.
Difference from Conference Version Portions of the
work presented in this paper have previously appeared
as an extended abstract in [1]. We have revised the
article a lot and improved many technical details as

compared to [1]. The primary improvements are as
follows: Firstly, we provide a new mechanism design on
secure outsourcing LE via direct method in Section 3.2.
The discussion on the pros and cons of this mechanism
justifies our observation and motivation for choosing
iterative method as our base for the secure outsourcing
mechanism design. Secondly, we provide a new Sec-
tion 6, where we thoroughly discuss the series of practi-
cal techniques and mechanism parameter considerations
that should be taken into account when implementing
the mechanism for specific applications. Thirdly, we
provide a new Section 8.3 in Related Work which include
discussions and comparisons over another important
branch of research works on data computation delega-
tion and result verification, which are closely related to
our cheating detection mechanism design. Finally, we
provide a complete yet rigorous security proof for the
theorem 1 in Section 5.2, which is lacking in [1].

9 CONCLUDING REMARKS

In this paper, we investigated the problem of securely
outsourcing large-scale LE in cloud computing. Differ-
ent from previous study, the computation outsourcing
framework is based on iterative methods, which has
the benefits of easy-to-implement and less memory re-
quirement in practice. This is especially suitable for the
application scenario, where computational constrained
customers want to securely harness the cloud for solving
large-scale problems. We also investigated the algebraic
property of the matrix-vector multiplication and devel-
oped an efficient and effective cheating detection scheme
for robust result verification. Thorough security analysis
and extensive experiments on the real cloud platform
demonstrate the validity and practicality of the proposed
mechanism.
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